
A Scalable RFID Authentication Protocol
Supporting Ownership Transfer and Controlled

Delegation

Albert Fernàndez-Mir1, Rolando Trujillo-Rasua1, Jordi Castellà-Roca1, and
Josep Domingo-Ferrer1

Universitat Rovira i Virgili
UNESCO Chair in Data Privacy

Department of Computer Engineering and Mathematics
Av. Päısos Catalans 26,

E-43007 Tarragona, Catalonia
albert.fernandez,rolando.trujillo,jordi.castella,josep.domingo@urv.cat

Abstract. RFID systems allow fast and automatic identification of RFID
tags through a wireless channel. Information on product items like name,
model, purpose, expiration date, etc., can be easily stored and retrieved
from RFID tags attached to items. That is why, in the near future, RFID
tags can be an active part of our everyday life when interacting with items
around us. Frequently, such items may change hands during their life-
cycle. Therefore, beyond RFID identification protocols, there is a need
for secure and private ownership transfer protocols in RFID systems. To
ensure privacy to tag owners, the keys of tags are usually updated during
the ownership transfer process. However, none of the previous proposals
takes advantage of this property to improve the system scalability. To
the best of our knowledge, we propose the first RFID identification pro-
tocol supporting ownership transfer that is secure, private and scalable.
Furthermore, our proposal achieves other valuable properties related to
ownership transfer, such as controlled delegation and decentralization.

Key words: RFID, Identification, Security, Privacy, Scalability, Own-
ership transfer, Controlled delegation

1 Introduction

A basic RFID scheme consists of a reader that uses radio waves in order to
identify several small devices named RFID tags. This technology is gaining more
and more momentum for identification, because it does not need physical or
visual contact to identify tags. A few years ago, Gillette announced their plans
of purchasing 500 million RFID tags for inventory control in their supply chain.
RFID systems are not only useful to identify single items, but also to identify
items in batches that logically should be placed together, e.g. a razor and a razor
blade into a box.

A good use of the RFID technology by a company may enable a positive
return of the investments in a short time [7]. However, although the price of
a tag can be small, the fact that companies should often buy millions of these
devices ties down their price to be not higher than 5 dollar cents [13]. That is
why low-cost tags are, in general, more suitable for large-scale systems.

Even though this technology offers important advantages to the users, it also
poses serious privacy and security risks to them. Considering that RFID tags
respond to any reader query without the tag holder being aware of it, an ad-
versary may be able to create a profile of a user by just reading the data of
the tags in the user’s possession. On the other hand, security measures must
be carefully adopted because simply eavesdropping the communication channel
between tags and readers could be enough to spoof a tag’s identity. For exam-
ple, if a tag attached to a Cohiba cigar box sends its identifier in plaintext, this
identifier can be easily cloned in order to fake this expensive product in an in-
ventory. Thus, it is necessary to develop secure schemes that prevent attackers
from misusing the information managed in RFID systems. Notice that this point
is earnestly suggested by the European Union in [15]. However, low-cost tags are
very constrained devices that can only perform basic and simple cryptographic
operations. Asymmetric-key cryptography is considered too expensive for low-
cost tags; symmetric-key cryptography is more suitable for resource-constrained
devices. Although several identification protocols using symmetric-key cryptog-
raphy have been proposed for RFID systems, combining privacy and scalability
through resource-constrained devices is still an issue [1].

In addition to the security and privacy problems, key management becomes
an issue when the owner of a tagged item changes. Let us consider a manufacturer
distributing RFID-tagged products to the point of sale. Later, these products
are sold to buyers who can resell them to other buyers. In order to track RFID-
tagged products across buyers, each reader could connect to the central server
that manages all the tags’ keys. However, this solution does not only cause
bottlenecks and overloads on the server side, but also causes privacy issues when
the product changes hands. The opposite solution is to share the keys of the tags
among the different owners. But, with this scheme, privacy issues arise because
previous and future owners of a tag are able to identify it even when it is not in
their possession. Indeed, the tag key and secret information must be transferred
from previous owners to new owners ensuring the security and privacy of past
and future tag identifications ownership transfer [12]).

In some special cases, such as for after-sale service of an RFID-tagged object,
the previous owner of a tag might need to temporarily recover the means of
interacting with it. For instance, this happens when the buyer goes back to the
seller to have a guaranteed appliance repaired. In this case, the current owner
of a tag should be able to transfer its identification rights over a tag to another
reader and to recover the exclusive right of identifying this tag at any moment.
If the reader to whom the identification rights over a tag were transferred is
a previous owner of this tag, the process is called authorization recovery [6]),
otherwise the process is called controlled delegation [17].

1.1 Contribution and plan of this article

Preserving privacy among owners is a challenging task when the ownership of
tagged products is transferred between them. Ownership transfer, authorization
recovery and controlled delegation schemes should be designed to be secure and
private not only against external adversaries, but also against previous owners. In
this paper, to the best of our knowledge, we propose the first RFID identification
protocol that is secure, private, scalable and able to perform ownership transfer,
authorization recovery and controlled delegation.

The rest of this article is organized as follows. In Section 2 we summarize the
current literature in the field of ownership transfer and put our contribution in
context. In Section 3 we describe our proposal and in Section 4 we analyze its
security. Section 5 contains conclusions and suggestions for future work.

2 Related work

A great number of authentication/identification protocols for RFID systems have
been proposed in the literature [9]. However, just a few of them have been ex-
tended to support ownership transfer, authorization recovery or controlled del-
egation. When the RFID system supports ownership transfer, the tags can be
used by different owners, so they have a longer life cycle. Authorization recovery
and controlled delegation are properties especially designed for after-sale and
maintenance service.

In identification/authentication protocols, RFID systems typically use a shared
key between the tag and the owner’s reader. Since the shared key is only known
by the owner’s reader, this reader alone can complete the tag identification suc-
cessfully. In ownership transfer protocols there are two players, the current owner
and the future owner. Before the protocol, only the current owner can identify
the tag; after the protocol is completed, only the new owner can identify the tag
successfully. This process is repeated every time the owner of the tag changes. So
far, two assumptions have been extensively used in order to achieve the property
mentioned above:

– Centralized scheme: There exists a Trusted Third Party (TTP) which
every entity (owner) trusts. It is assumed that entities can establish a secure
communication.

– Isolated environment: There exists a secure environment, so that each
entity can execute the protocol with the tag without being eavesdropped by
an adversary.

Both assumptions make sense depending on the application. A centralized
scheme might be used in inventory control or supply-chain management appli-
cations, where all tags are identified by readers belonging to the same company.
However, when a user buys a product, she does not necessarily trust anyone.
Hence, a centralized scheme is not suitable. In this case, it is assumed that the
user can go to an isolated environment (e.g. the user’s home), where he can
change the tag key without being eavesdropped by an adversary.

2.1 Ownership transfer model

An ownership transfer protocol allows transfering the rights over a tag T from
the current owner to the new owner in a secure and private way. According to [14,
17], there are three different roles (entities) in an ownership transfer protocol:

– The previous owner. In the past, this entity had the ability to identify or
track T as much as he wanted, but now she cannot do these operations any
more.

– The current owner. At present, only this entity can identify and track T .
– The new owner. She cannot identify or track T at the beginning of the

protocol . When the protocol finishes, T can only be identified or tracked by
this entity.

When it is required to transfer the ownership of T , the current owner and
the new owner run an ownership transfer protocol on T . The secrets and data
stored in T are transferred from the current owner to the new owner. Thus, roles
change. The current owner of T becomes the previous owner of T , while the new
owner of T becomes the current owner of T .

The ownership transfer process motivates the requirements of authorization
recovery and controlled delegation mentioned in the introduction. Figure 1 shows
the players that can be involved in an ownership transfer protocol.

Fig. 1. A generic scenario for ownership transfer

2.2 Previous proposals

The first solution to the ownership transfer problem based on a centralized
scheme was proposed by Saito et al. in [12]. In this protocol, tags receive en-
crypted messages using the TTP key (KTTP). Since all tags know KTTP , they

are able to correctly decrypt the messages coming from the trusted third party.
However, tags are not tamper-resistant and, hence, tampering just one tag is
enough to break the security of the whole system by finding KTTP . Saito et
al. [12] also consider the case where a centralized scheme cannot be used. In this
case, they assume that the backward channel (from tag to reader) is unreadable
by adversaries. Therefore, a secure communication between tags and readers is
achieved by the reader encrypting messages using a nonce sent by the reader
to the tag that is refreshed at each session. However, although the range of the
backward channel is shorter than the range of the forward channel from reader
to tag, in general the backward channel cannot be considered as unreadable by
adversaries.

Another centralized scheme for ownership transfer and controlled delegation
is proposed by Molnar et al. in [10]. They use a centralized trusted center named
TC to manage tag keys in a tree structure. The delegation property is achieved
when the trusted center gives a subtree of pseudonyms to a reader. Using this
subtree of pseudonyms, a reader is able to identify a tag q times where q is
the number of leaves of this subtree. The keys shared by several tags are a
protocol weakness that reduces security. Therefore, the privacy of the whole
system decreases quickly when more tags are compromised [2].

Unlike Molnar et al.’s protocol [10], other proposals use a counter into the
non-volatile memory of tags in order to control how many identifications can be
done after the execution of a controlled delegation protocol. The basic idea is
that tags give different responses depending on whether the counter c is less than
some threshold cmax or equals cmax. As shown by Fouladgar and Afifi [6], while
c < cmax the tag responds using a key known just by the trusted center and
by the readers (the trusted center gave rights to the readers previously). Once
the counter reaches its maximum value, the tag encrypts its responses using a
key known just by the trusted center and hence, the tag identification is only
possible through the trusted server. However, using a counter on the tag side
raises two main issues: i) the counter must be in the non-volatile memory of
the tag; ii) giving rights to more than one reader causes that tag keys to be
shared by several readers. Notice that a reader that knows the identification key
of some tag is able to know where and when this tag is being identified by any
other reader.

Schemes based on a centralized and trusted third party require that readers
be online at each execution of the ownership transfer protocol. Further, some of
the parties involved in the ownership transfer process may not actually trust the
TTP. There exist some proposals without a TTP. To the best of our knowledge,
the first decentralized protocol relying on the assumption that owners are able
to change the tag key in an isolated environment was proposed by Yoon and
Yoo [16]. However, this protocol has security vulnerabilities well described in [8].
Under the same assumption, Chen et al. [3] proposed an improvement of Osaka et
al.’s scheme [11] through authentication of the reader by the tag before changing
the tag key. Although this protocol guarantees a successful ownership transfer

process, a previous owner can neither check whether a tag was in its possession
nor can temporarily recover the means of interacting with a tag.

The property of authorization recovery [14] allows a previous owner of a tag
to identify it again. This property is considered a particular case of delegation
and could be achieved simply restoring the key of the previous owner into the
tag. For instance, Dimitriou [4] proposes a simple tag release command that
restores the manufacture key of the tag. However, this solution gives autho-
rization recovery rights just to the tag manufacturer. Song et al. [14] solve this
drawback in their proposal. Each tag owner remembers the key of the previous
tag owner. Hence, updating the tag key to the key used by the previous owner
is enough for authorization recovery. Although both protocols [14, 4] do not sup-
port controlled delegation, they have the advantage of not needing a trusted
third party. The recent work in ownership transfer [17] shows that ownership
transfer and controlled delegation are possible in a decentralized scheme. The
authors propose a scheme that achieves all the desired properties defined so far
in ownership transfer. However, their scheme can be used only in those identi-
fication/authentication protocols where: i) keys are not updated; or ii) keys are
updated using Song et al.’s protocol [14]. Such a constraint has severe effects on
the scalability of the identification process. Note that, although most identifica-
tion protocols with key updating are not private against active adversaries, they
can scale better than protocols without key updating.

In this paper, a new decentralized identification protocol with ownership
transfer and controlled delegation is proposed. On the reader’s side, tag iden-
tification is scalable in the number of tags. Once the tag has been identified,
its identification key is updated. This property is used in the ownership trans-
fer process in order to update the owner’s key. Similarly to the proposals [10]
and [14], the protocol has the advantage of supporting controlled delegation
without needing a counter on the tag’s side. Also, although it is based on syn-
chronization unlike previous proposals [17, 14, 4], our protocol is still secure and
private against active adversaries.

3 Our protocol

As discussed in Section 2, there exist several secure and private RFID identifi-
cation protocols with ownership transfer [3, 4, 6, 10–12, 14, 16, 17]. However, just
a few of them can deal with controlled delegation [4, 6, 14, 17]. Besides, none of
these protocols leverages the updating phase performed during the ownership
transfer process in order to efficiently identify the tags.

We propose an RFID identification protocol that is efficient both at the tag
and at the server sides. Our protocol is based on the synchronization between
the server and the tag, but even when these are desynchronized, it still can be
scalable and resistant against denial-of-service attacks. The protocol has been
designed to guarantee that an attacker cannot distinguish whether a tag is syn-
chronized or not. This fact adds one more degree of difficulty for an attacker
who wants to trace a tag or mount a denial-of-service attack. Together with

the above mentioned features, our proposal supports ownership transfer and
controlled delegation in a decentralized scheme. The result is a secure, private
and scalable RFID identification protocol that supports ownership transfer and
controlled delegation.

Our proposal is partially based on the Fernández-Mir et al. protocol [5] and
consists of five phases: initialization, synchronized identification, desynchronized
identification, update and ownership transfer. The update phase is executed after
each successful identification. If the tag cannot be updated and the system is
desynchronized, it can still be identified by a desynchronized identification phase
that preserves all the security and privacy properties. Table 1 summarizes the
notation used to describe the new proposal.

Table 1. Notation used in the protocol

R Reader
T Tag
id Tag identifier
ik Identification key
uk Update key
ri Random number
h() One-way hash function
hk() Keyed hash function (HMAC)
PRNG Pseudo-random number generator
SY NC Synchronization state
Ci Pseudo-random bit sequence
S Pseudo-random bit sequence
mi Update message
kδ Hash chain
|| Concatenation operator
⊕ XOR operator

3.1 System environment

The proposed protocol requires a server that hosts its own database and readers
that transmit information from tags to the server. For each tag, the server stores
a record containing the following data (see Table 2):

– id: The tag identity.
– Infoid: The tag information.
– uk: An update key uk that only changes after the execution of a successful

ownership transfer protocol. This key is only known by the current tag owner.
– ik and hid(ik): A tag identification key ik and its associated hash value
hid(ik) using the tag identifier as key. As described, the hash value is used
to identify a tag in a lookup table.

– ikold and hid(ikold): A previous tag identification key ikold and its associated
hash value hid(ikold) are kept in order to prevent denial-of-service attacks.

– Table k: A table used to identify a tag in case of desynchronization between
the tag and the server. Row 1 and row 2 in the table store hash chains of
size MAX starting from ikold and ik, respectively.

Table 2. DB values for each tag

Tag data Table k

id
Infoid
uk
ik

hid(ik)
ikold

hid(ikold)

koldi ki
0 hid(ikold) hid(ik)

1 huk(kold0 ||id) huk(k0||id)

2 huk(kold1 ||id) huk(k1||id)
...

...
...

MAX huk(koldMAX−1||id) huk(kMAX−1||id)

3.2 Protocol phases

In this section we describe the five different phases of our protocol. Table 4 in
Appendix A depicts the four phases after initialization.

Initialization. Two unique keys, ik and uk, are generated for each tag. Then,
ik, uk and id are written on the non-volatile memory of the tag via a secure
channel. This information will be used later by the tag to perform identification
and ownership transfer. After tag initialization, the server stores the tag data in
its database (see Table 2).

Synchronized identification phase. When the tags are synchronized, they
execute this phase in order to be identified by a legitimate reader.

1. First, the reader broadcasts a nonce r0.
2. Then, the synchronized tag answers with the following information: hid(ik),
C0 = PRNG(ik||r0||r1)1 and r1. After sending all data, the tag switches to
a desynchronized state (SY NC = 0) until the update phase ends.

3. Upon reception of these data, the reader forwards them to the server.
4. Then, the server searches inside a lookup table the value hid(ik) and obtains

the tag’s data ik and id. Using the identification key ik and the nonces r0 and
r1, the server checks C0 and decides whether to send id to the reader. Note
that by checking C0 the server avoids phishing or replay attacks. Finally, the
server saves r0 and r1. These values are used in the update phase.

1 The pseudo-random number generator PRNG is supposed to be secure and unpre-
dictable.

Update phase. All the features of our protocol are mainly based on this phase.

1. The server composes m by concatenating a new identification key mL =
iknew and its hash value mR = hid(iknew). Finally, the server computes
C1 = m⊕S where S = PRNG(huk(ik)||id||r0||r1) is an unpredictable pseu-
dorandom sequence. The server sends C1 to the reader.

2. The reader forwards C1 to the tag.
3. Upon reception of C1, the tag generates its own pseudorandom sequence
S′ = PRNG(huk(ik)||id||r0||r1), and computes m′ = C1 ⊕ S′. By splitting
m′, the tag obtainsm′R andm′L and checks whetherm′R = huk(m′L). If so, the
tag can be sure that m′ is, indeed, m; otherwise the tag rejects the reader’s
response. After the reader authentication, the tag splits m and updates its
data: ik = m′L and SY NC = 1.

Desynchronized identification phase. This phase is executed when reader
and tag are desynchronized, e.g. the message C1 corresponding to the update
phase was incorrect or it had not been received. The steps are as follows:

1. The reader sends r0 to the tag, like in the synchronized identification phase.
2. The tag generates a new nonce r1 and computes:
C0 = PRNG(huk(kdelta)||id||r0||r1), δ = δ + 1, and kδ = hik(kδ−1) where
k0 = hid(ik). Finally, the tag sends kδ and C0 to the reader.

3. Upon reception of the tag’s response, the reader forwards the data to the
server, who will search the value kδ in the database using a lookup table
generated with all the Table k in the database (see Table 2). If the kδ value
is not found, the identification process fails. Otherwise, if kδ is found in one
or more records of the database, the server obtains the correct identifier
through search of the id matching the C0 value.

4. After a correct identification of the tag, the reader starts the Update phase.

It should be remarked that, the desynchronized identification phase can be
executed consecutively just MAX times. If the number of consecutive identifica-
tions by a desynchronized identification phase is greater than MAX, the server
will not be able to identify the tag any more (denial of service). The value of the
parameter MAX is extensively discussed in [5].

Controlled delegation phase. This phase is run when the current owner
needs to delegate identification rights to a new reader.

1. First, the current owner runs a successful synchronized identification phase
but skips the update phase. At this stage, the tag is desynchronized and
therefore responds with kδ values when queried.

2. Then, the current owner just needs to give to the new reader the following
infomation: id and n pairs (kδ, huk||ik(kδ)).

3. Later, the current owner is able to recover full control over the tag using one
of the two following strategies: i) run a successful synchronized identification
phase together with an update phase or ii) query the tag n times where n is
the number of values given to the new reader.

When the new reader identifies a tag n times by controlled delegation, loose
the right to identify this tag and only the current owner is able to identify the
tag again. If the new reader needs to identify this tag again, it must request
authorization to the current owner one more time

This procedure is also described in Table 3 in Appendix 5.

Owner transfer phase. This phase is used to transfer ownership of the tag
from the current owner to the new owner. The basic idea is to use a temporary
key, as shown in Figure 2.

1. First, the current owner updates the key uk with uktmp. This prevents the
new owner from backward tracking the tag.

2. Next, the current owner gives to the new owner the key uktmp.
3. Finally, the new owner updates uktmp with uknew to prevent the old owner

from forward tracking the tag.

After the previous protocol, the current owner plays the role of the previous
owner while the new owner becomes the current owner. It should be remarked
that a tag can know that uk is being updated by computing the left part of C2.
On the other hand, the new owner should update uk in an isolated environment
in order to prevent the current owner from eavesdropping the messages and
computing uknew.

uk −→ uktmp −→ uknew

Fig. 2. Life-cycle of the update key during the ownership transfer process

Authorization recovery. In our scheme, an authorization recovery process
can be performed as a controlled delegation process. However, we must assume
that the current owner is unwilling to give the tag’s identifier to another reader.
The previous owner must search in its data base an identifier that matches C0

using one of the provided pairs (kδ, huk||ik(kδ)). Note that this checking process
can be only performed by a previous owner of a tag and, hence, the tag can be
identified only by a legitimate previous owner.

3.3 Protocol states

In this protocol, a tag can be in one of the following states: initialized, synchro-
nized, desynchronized and owner transfer. The tag changes its state by means
of the following operations:

– (a) Initializing a tag. Once a tag has been initialized, it goes to the synchro-
nized state.

– (b) Identifying a tag when it is synchronized. Once the tag is synchronized,
if an identification is requested then its state changes to desynchronized.

– (c) Updating a tag. After a tag has been identified, the reader sends an
update message. If the message is verified properly by the tag, the tag goes
to the synchronized state.

– (d) Identifying a tag when it is desynchronized does not change the tag’s
state. Thus, the tag will remain desynchronized.

– (e) Running an owner transfer protocol. When the current owner runs the
owner transfer phase, the tag changes its state to owner transfer. When the
operation is verified successfully, the tags state is set to synchronized.

– (f) Disabling a tag. If the desynchronized identification phase is run more
than MAX consecutive times, the tag is disabled (denial of service).

Figure 3 shows the different states and operations that are possible in the
protocol.

Fig. 3. The state diagram contains the states and transitions of an RFID tag in our
scheme. The states are the following: i) tag initialized (INIT), ii) tag synchronized
(SYNC), iii) tag desynchronized (DSYNC), and iv) tag disabled (DoS).

4 Analysis

The protocol has the following security and privacy properties.

4.1 Privacy

We consider the following privacy property:

Monitoring and location. Location privacy is guaranteed because, in each
identification, the data sent are always different, thanks to the use of nonces r0
and r1. Indeed, values ik, hid(ik), C0 and r1 are updated in each identification.

If the reader and the tag are not synchronized, then the updated elements are:
kδ, C0 and r1. If both devices are synchronized, hid(ik) can appear twice with a
probability of 1/2` where ` is the size of the hash function.

The probability for kδ is the same as hid(ik) in consecutive secondary iden-
tifications.

4.2 Security

Below are the most common attacks which can be launched on RFID schemes:

Denial of service. An attacker can query the tag or interrupt the update
phase MAX + 1 times, so that after that, a legitimate reader will not find kδ in
the database and will not be able to identify the tag. Since MAX is a security
parameter of our system, we can set this value in order to increase the resistance
of the proposed protocol against this attack. If the table is large enough, the
time needed to consume all the values will be high enough. For instance, for
MAX = 100, 000 the required time to obtain all values of Table k by an attacker,
taking into account that each identification needs an interval of 200 ms, is 5.5
hours. By contrast, the disk space needed in a system with only 100,000 tags is
24 Tb.

To prevent massive attacks, the system can identify the tags regurarly. In
this case, if an attacker is trying to knock out a tag, once the system updates
that tag, the attacker must restart the DoS attack from zero. Furthermore, the
value of MAX can be parameterized to resist DoS attacks. The fact that a high
value of MAX behave a high space in disk is assumed due to the low cost of
storage units today, yet this is one aspect to improve in a future versions of this
protocol.

Impersonation of devices.

– Impersonating a certain tag. An attacker does not know values ik, uk and
id. These elements are sent in the initialization phase using a secure commu-
nication channel. An attacker trying to impersonate a certain tag without
the knowledge of these values will be detected by the reader. If an attacker
is able to obtain the tag values, this information does not compromise other
tags. Hence, impersonating a tag requires physically tampering with it and,
in that case, it allows impersonating only that tag.

– Impersonating the server. This case is similar to the previous property.
The server can only be impersonated by an attacker who knows the entire
database. We assume that the database is hosted in a secure environment.

– Replay attacks. This type of attack is not possible in this protocol because,
in each identification, each of the sides (tag and server) provides a new value
which is computed at random. In this way, a replay attack at the server side
will be successful only if the message which has been captured previously
contains the expected r0 value. The same happens at the tag side but with

the value r1. Random nonces r0 and r1 are generated in each device and
they are unlikely to be repeated over a short period of time. In this way,
value hid(ik) is different in each synchronized identification phase. In the
desynchronized identification phase case, kδ is always different.

4.3 Ownership transfer

Our proposal satisfies the following properties.

New owner privacy. Our protocol is designed to guarantee that the transac-
tions between the current owner and the tag cannot be traced by the previous
owner. When the ownership of the tag is transferred, uk and ik are randomly
updated, thereby ensuring that previous owners cannot identify the tag anymore
unless the current owner allows controlled delegation.

Previous owner privacy. Since the update key is changed twice (uk →
uktmp → ik), the previous owner’s privacy is also guaranteed. As a result, the
current owner cannot trace previous transactions between the previous owner
and the tag.

Authorization recovery. The protocol satisfies this property because the cur-
rent owner can delegate the reading of the tag in a controlled fashion.

5 Conclusions

The novelty of our proposal consists of leveraging the update phase, that is used
in the RFID identification protocol, in order to implement the ownership transfer
protocol. Moreover, the protocol allows controlled delegation without the need of
a counter in the non-volatile memory of tags. This feature is especially important
considering that: i) tags are resource-constrained devices; ii) readers should not
share the identification key of a tag. Finally, the protocol does not need a TTP,
so that the users can perform ownership transfers any time and anywhere.

Disclaimer and acknowledgments

The authors are solely responsible for the views expressed in this paper, which
do not necessarily reflect the position of UNESCO nor commit that organi-
zation. This work was partly supported by the Spanish Ministry of Educa-
tion through projects TSI2007-65406-C03-01 “E-AEGIS” and CONSOLIDER
CSD2007-00004 “ARES”, by the Spanish Ministry of Industry, Commerce and
Tourism through project “eVerification” TSI-020100-2009-720 and by the Gov-
ernment of Catalonia under grant 2009 SGR 1135. The last author is partly
supported as an ICREA Acadmia Researcher by the Government of Catalonia.

References

1. B. Alomair and R. Poovendran. Privacy versus scalability in radio frequency iden-
tification systems. Computer Communications, 33(18):2155 – 2163, 2010.

2. G. Avoine, E. Dysli, and P. Oechslin. Reducing Time Complexity in RFID Systems.
In Bart Preneel and Stafford Tavares, editors, Selected Areas in Cryptography –
SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 291–306,
Kingston, Canada, August 2005. Springer.

3. H.B. Chen, W.B. Lee, Y.H. Zhao, and Y.L. Chen. Enhancement of the RFID
security method with ownership transfer. In Proceedings of the 3rd International
Conference on Ubiquitous Information Management and Communication, pages
251–254. ACM, 2009.

4. T. Dimitriou. rfidDOT: RFID delegation and ownership transfer made simple. In
Proceedings of the 4th international conference on Security and privacy in commu-
nication netowrks, pages 1–8. ACM, 2008.

5. A. Fernández-Mir, J. Castellà-Roca, and A. Viejo. Secure and Scalable RFID
Authentication Protocol. In J. Garcia-Alfaro et al., editor, DPM 2010 and SETOP
2010, volume 6514 of Lecture Notes in Computer Science, pages 231–243, Athens,
Greece, September 2010. Springer.

6. S. Fouladgar and H. Afifi. An efficient delegation and transfer of ownership protocol
for RFID tags. In First International EURASIP Workshop on RFID Technology,
Vienna, Austria, 2007.

7. C. Goebel, C. Tribowski, O. Gunther, R. Troeger, and R. Nickerl. RFID in the
Supply Chain: How to Obtain a Positive ROI-The Case of Gerry Weber. In 11th
International Conference on Enterprise Information Systems (ICEIS 2009), Milan,
Italy, May 6, volume 10, pages 95–102, 2009.

8. G. Kapoor and S. Piramuthu. Vulnerabilities in some recently proposed RFID
ownership transfer protocols. In 2009 First International Conference on Networks
& Communications, pages 354–357. IEEE, 2009.

9. M. Langheinrich. A survey of RFID privacy approaches. Personal and Ubiquitous
Computing, 13(6):413–421, 2009.

10. D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseudonym proto-
col enabling ownership transfer of RFID tags. In Selected Areas in Cryptography,
pages 276–290. Springer, 2006.

11. K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi. An Efficient and Secure
RFID Security Method with Ownership Transfer. In Computational Intelligence
and Security, 2006 International Conference on, volume 2, pages 1090–1095. IEEE,
2007.

12. J. Saito, K. Imamoto, and K. Sakurai. Reassignment scheme of an RFID tags key
for owner transfer. Embedded and Ubiquitous Computing, pages 1303–1312, 2005.

13. S.E. Sarma. Towards the five-cent tag. Technical report, 2001.
14. B. Song and C.J. Mitchell. Scalable RFID security protocols supporting tag own-

ership transfer. Computer Communications, 2010.
15. European Union. Commission recommendation of 12 may 2009 on the imple-

mentation of privacy and data protection principles in applications supported by
radiofrequency identification. Technical Report Official Journal of the European
Union, May 2009.

16. E.J. Yoon and K.Y. Yoo. Two security problems of RFID security method with
ownership transfer. In Network and Parallel Computing, 2008. NPC 2008. IFIP
International Conference on, pages 68–73. IEEE, 2008.

17. C. Yu Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. Practical RFID Ownership
Transfer Scheme. Journal of Computer Security - Special Issue on RFID System
Security, 2010.

A Tables

Table 3. Controlled delegation and owner transfer phases

Current User Tag Final User

Controlled delegation phase

Synchronized identification phase
-
SY NC = 0

id and n pairs (kδ, huk||ik(kδ)) (with secure channel)
-

Desynchronized identification phase
�

SY NC = 0

Owner transfer phase

mL = uknew, mR = huk(uknew)
m = mL||mR

S = PRNG(huk(id)||r0||r1)
C2 = m⊕ S

C2

-
S

′
= PRNG(huk(id)||r0||r1)

m
′

= C2 ⊕ S
′

m
′
R

?
= huk(m

′
L)

uk = m
′
L

all data of the tag (with secure channel)
-

Owner transfer phase
�

Table 4. Our protocol

Server Reader Tag

Initialization phase (with secure channel)

ik, uk, id
-

Synchronized identification phase

r0 ∈ R{0, 1}∗
r0

-
r1 ∈ R{0, 1}∗
C0 = PRNG(ik||r0||r1)
δ = 0
Computes hid(ik)
SY NC = 0

hid(ik), C0, r1, r0
�

hid(ik), C0, r1
�

Searches hid(ik)
Checks C0

Update phase

mL = iknew, mR = huk(iknew)
m = mL||mR

S = PRNG(huk(id)||r0||r1)
C1 = m⊕ S

C1

-
C1

-
S

′
= PRNG(huk(id)||r0||r1)

m
′

= C1 ⊕ S
′

m
′
R

?
= huk(m

′
L)

ik = m
′
L

SY NC = 1

Desynchronized identification phase

r0 ∈ R{0, 1}∗
r0

-
r1 ∈ R{0, 1}∗
k0 = hid(ik)
δ = δ + 1
kδ = hik(kδ−1||id)
C0 =
PRNG(huk(kdelta)||id||r0||r1)

kδ, C0, r1
�

kδ, C0, r1
�

Searches kδ on Table k.
Checks C0

Start update phase

