Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph

M. Lemańska ${ }^{\text {a }}$, J. A. Rodríguez-Velázquez ${ }^{\text {b }}$, Rolando Trujillo-Rasua ${ }^{\text {c,* }}$
${ }^{a}$ Department of Technical Physics and Applied Mathematics Gdansk University of Technology, Poland
${ }^{b}$ Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili, Spain
${ }^{c}$ Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg

Abstract

A vertex cover of a graph $G=(V, E)$ is a set $X \subset V$ such that each edge of G is incident to at least one vertex of X. The vertex cover number $\tau(G)$ is the size of a minimum vertex cover of G. A dominating set $D \subseteq V$ is a weakly connected dominating set of G if the subgraph $G[D]_{w}=\left(N[D], E_{w}\right)$ weakly induced by D, is connected, where E_{w} is the set of all edges having at least one vertex in D. The weakly connected domination number $\gamma_{w}(G)$ of G is the minimum cardinality among all weakly connected dominating sets of G. In this article we characterize the graphs where $\gamma_{w}(G)=\tau(G)$. In particular, we focus our attention on bipartite graphs, regular graphs, unicyclic graphs, block graphs and corona graphs.

Keywords: Vertex cover number, weakly connected domination number

1. Introduction

Throughout this paper $G=(V, E)$ will be a finite, undirected, simple graph of order n. A vertex cover of G is a set $X \subset V$ such that each edge of G is incident to at least one vertex of X. A minimum vertex cover is a vertex cover of smallest possible cardinality. The vertex cover number $\tau(G)$ is the cardinality of a minimum vertex cover of G. A vertex cover of cardinality $\tau(G)$ is called a $\tau(G)$-set. The minimum vertex cover problem arises in various important applications, including in multiple sequence alignments in computational biochemistry (see for example [6]). In computational biochemistry there are many situations where conflicts between sequences in a sample can be resolved by excluding some of the sequences. Of course, exactly what constitutes a conflict must be precisely defined in the biochemical context. It is possible to define a conflict graph where the vertices represent the sequences in the sample and there is an

[^0]edge between two vertices if and only if there is a conflict between the corresponding sequences. The aim is to remove the fewest possible sequences that will eliminate all conflicts, which is equivalent to finding a minimum vertex cover in the conflict graph. Several approaches, such as the use of a parameterized algorithm [3] and the use of a simulated annealing algorithm [11], have been developed to deal with this problem.

A set $D \subseteq V$ is dominating in $G=(V, E)$ if every vertex of $V-D$ has at least one neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality among all dominating sets in G.

The neighborhood of a vertex $v \in V$ is the set $N(v)$ of all vertices adjacent to v in G. For a set $X \subseteq V$, the open neighborhood, $N(X)$, is defined to be $\cup_{v \in X} N(v)$ and the closed neighborhood of X is defined as $N[X]=N(X) \cup X$. Then the degree of a vertex $v \in V$ is $\operatorname{deg}(v)=|N(v)|$. Given a vertex v of $G=(V, E)$ and a set $X \subset V$, let $N_{X}(v)=\{u \in X: u v \in$ $E\}$.

Recall that a graph G is $\left(\delta_{1}, \delta_{2}\right)$-semiregular if all its vertices have degree either δ_{1} or δ_{2}. In a $\left(\delta_{1}, \delta_{2}\right)$-semiregular bipartite graph $G=(U \cup W, E)$ every vertex of U has degree δ_{1} and every vertex of W has degree δ_{2}.

A dominating set $D \subseteq V$ is a weakly connected dominating set of G if the subgraph $G[D]_{w}=\left(N[D], E_{w}\right)$ weakly induced by D, is connected, where E_{w} is the set of all edges having at least one vertex in D. Dunbar et al. [2] defined the weakly connected domination number $\gamma_{w}(G)$ of a graph G to be the minimum cardinality among all weakly connected dominating sets of G. A weakly connected dominating set of cardinality $\gamma_{w}(G)$ is called a $\gamma_{w}(G)$-set.

The motivation of studying weakly connected dominating sets comes from the study of ad hoc wireless networks [1]. A crucial way in which these differ from current cellular networks is that they do not have a separate routing infrastructure such as a system of base-stations; the mobiles have to conduct their own communication through routing. In these networks it is necessary to set up the so-called backbone, i.e., a set of vertices and the links between them that is in charge of routing. In the specialized literature there is a general consensus that the backbone should be a dominating set, i.e., each vertex is either in the backbone or next to some vertex in it. Rajaraman in [7] said that the most basic clustering that has been studied in the context of ad hoc networks is based on dominating sets. Moreover, the following additional features are considered to be appealing: (a) the backbone should be "small" and (b) it should be connected or weakly connected. Computing small connected dominating sets has been the focus of many articles $[8,9,10]$. While connectivity appears to be a natural requirement, several authors have argued that the right notion to apply in the wireless context is weak connectivity [1].

The main goal of this article is the study of analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph. To begin with, we establish some preliminary results.

2. Preliminaries

Since every vertex cover is also a weakly connected dominating set, the following result holds.

Proposition 1. [2] For any graph G of order $n, \gamma_{w}(G) \leq \tau(G)$.
The following result will be useful in Section 4 where we show that for regular graphs of order $n, \gamma_{w}(G)=\tau(G)$ if and only if G is bipartite and $\gamma_{w}(G)=\frac{n}{2}$.
Theorem 2. [2] For any connected graph G of order n, $\gamma_{w}(G) \leq \frac{n}{2}$.
If T is a tree and D is a minimum weakly connected dominating set of T, then every edge of T has at least one of its vertices in D. So every weakly connected dominating set in a non-trivial tree T is also a vertex cover of T and every vertex cover of T is a weakly connected dominating set.

Proposition 3. [2] For any tree T of order $n \geq 2, \tau(T)=\gamma_{w}(T)$.
In general, there are some graphs for which these parameters are equal, but the concepts are not necessarily equivalent. For example, if we consider a cycle $C_{6}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}\right)$, then $\gamma_{w}\left(C_{6}\right)=\tau\left(C_{6}\right)=3$. The set $\left\{v_{1}, v_{3}, v_{5}\right\}$ is both a minimum weakly connected dominating set and a minimum vertex cover of C_{6}. But, for instance, the set $\left\{v_{1}, v_{3}, v_{4}\right\}$ is a minimum weakly connected dominating set, but it is not a vertex cover of C_{6}.

Of course, there are also graphs G for which $\gamma_{w}(G)<\tau(G)$. As a simple example, consider the cycle $C_{2 k+1}(k \geq 1)$, where $\gamma_{w}\left(C_{2 k+1}\right)=k$ and $\tau\left(C_{2 k+1}\right)=k+1$.

Claim 4. For the cycle graph $C_{n}, \gamma_{w}\left(C_{n}\right)=\tau\left(C_{n}\right)$ if an only if n is even.
In order to show a nontrivial family of graphs where the difference between τ and γ_{w} is arbitrarily large, we establish the following bound on the weakly connected domination number of the hypercube graphs.

Proposition 5. For every hypercube graph $Q_{k}, k \geq 2$,

$$
\gamma_{w}\left(Q_{k}\right) \leq 2^{k-2}+1
$$

Proof. We know that the hypercube Q_{k} can be defined by recurrence as a Cartesian product graph, i.e., $Q_{k}=Q_{k-1} \square K_{2}, k \geq 1$, where $Q_{1}=K_{2}$. Let $\{a, b\}$ be the set of vertices of K_{2}. $S_{2}=$ $\{(a, a),(b, b)\}$ is a weakly connected dominating set for Q_{2} and $S_{3}=\{(a, a, a),(b, b, a),(b, b, b)\}$ is a weakly connected dominating set for Q_{3}.

Now, let $S_{3}^{\prime}=\{(b, b, a)\}$. Note that $S_{3}^{\prime \prime}=S_{3}-S_{3}^{\prime}$ is an independent dominating set for Q_{3}. So, in $Q_{4}, S_{3} \times\{a\}$ is a weakly connected dominating set for the copy of Q_{3} corresponding to a and $S_{3}^{\prime \prime} \times\{b\}$ is a dominating set for the copy of Q_{3} corresponding to b. Notice also that for
every $x \in S_{3}^{\prime \prime},(x, a)$ and (x, b) are neighbors in Q_{4}. Thus, $S_{4}=\left(S_{3} \times\{a\}\right) \cup\left(S_{3}^{\prime \prime} \times\{b\}\right)$ is a weakly connected dominating set for Q_{4}.

Following this process, we take $S_{5}=\left(S_{4} \times\{a\}\right) \cup\left(S_{4}^{\prime \prime} \times\{b\}\right)$, where $S_{4}^{\prime \prime}=S_{4}-S_{3}^{\prime} \times\{a\}$. As above, S_{5} is a weakly connected dominating set for Q_{5}. In general, $S_{k}=\left(S_{k-1} \times\{a\}\right) \cup$ $\left(S_{k-1}^{\prime \prime} \times\{b\}\right)$, is a weakly connected dominating set for Q_{k}, where $S_{k-1}^{\prime \prime}=S_{k-1}-S_{k-2}^{\prime} \times\{a\}$.

Moreover, $\left|S_{k}\right|=2\left|S_{k-1}\right|-1$, where $\left|S_{2}\right|=2$ and $\left|S_{3}\right|=3$. Hence, $\left|S_{k}\right|=2^{k-2}+1$. The proof is complete.

It is well-known that for the hypercube $Q_{k}, \tau\left(Q_{k}\right)=2^{k-1}$ (see, for instance, [4]). Thus, by Proposition 5 we have

$$
\tau\left(Q_{k}\right)-\gamma_{w}\left(Q_{k}\right) \geq 2^{k-2}-1
$$

So, the difference between $\tau\left(Q_{k}\right)$ and $\gamma_{w}\left(Q_{k}\right)$ is arbitrarily large.
The next sections are devoted to a characterization of those graphs G which satisfy $\gamma_{w}(G)=$ $\tau(G)$. In particular, we focus our attention on bipartite graphs, regular graphs, unicyclic graphs, block graphs and corona graphs.

3. Bipartite graphs

Theorem 6. (König 1931, Egerváry 1931) For bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover.

We will use König-Egerváry's theorem to prove the following result.
Theorem 7. Let G be a Hamiltonian bipartite graph of order n. Then $\gamma_{w}(G)=\tau(G)$ if and only if G is isomorphic to the cycle graph C_{n}.

Proof. Let $G=(U \cup W, E)$. We know that if G is Hamiltonian, then $|U|=|W|$. So, if $\left(v_{1}, v_{2}, \ldots v_{n}, v_{1}\right)$ is a Hamiltonian cycle of G, then we can take $U=\left\{v_{1}, v_{3}, \ldots, v_{n-1}\right\}$ and $W=$ $\left\{v_{2}, v_{4}, \ldots, v_{n}\right\}$. Suppose there exists at least one vertex, say v_{1}, of degree greater than two. Then $S=\left\{v_{1}, v_{4}, v_{6}, \ldots, v_{n-2}\right\}$ is a dominating set and v_{1} must be adjacent to at least one vertex belonging to $S-\left\{v_{1}\right\}$. Hence, $G[S]_{w}$ is connected and, as a consequence, $\gamma_{w}(G) \leq|S|=\frac{n}{2}-1$. Since every bipartite Hamiltonian graph has a perfect matching, by König-Egerváry's theorem we conclude that $\tau(G)=\frac{n}{2}$. Therefore, if $\gamma_{w}(G)=\tau(G)$, then G has maximum degree $\delta \leq 2$ and, since G is Hamiltonian, we observe that G is isomorphic to the cycle graph C_{n}.

The converse is straightforward.
Given a connected graph $G=(V, E)$, we say that $X \subset V$ is a cut set if the subgraph of G induced by $V-X$ is not connected.

Lemma 8. Let $G=(U \cup W, E)$ be a bipartite graph where $|U| \leq|W|$. Let d be the minimum among the degrees of the vertices belonging to W. If $\gamma_{w}(G)=|U|$ and $d \geq 3$, then for every pair of vertices $u, v \in U$ such that $N(u) \cap N(v) \neq \emptyset$, it follows that $\{u, v\}$ is a cut set.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. Suppose, without loss of generality, that u_{1} and u_{2} are adjacent to w_{1} and $\left\{u_{1}, u_{2}\right\}$ is not a cut set. Let $S=\left\{w_{1}, u_{3}, u_{4}, \ldots, u_{r}\right\}$. Since $d \geq 3$, each vertex of $W-\left\{w_{1}\right\}$ must be adjacent to at least one vertex belonging to $S-\left\{w_{1}\right\}$. Hence, S is a dominating set.

Now, since $\left\{u_{1}, u_{2}\right\}$ is not a cut set, the subgraph of G obtained by removing u_{1} and u_{2} is connected and, as a consequence, $G[S]_{w}$ is connected. Therefore, S is a weakly connected dominating set and $\gamma_{w}(G) \leq|S|=|U|-1$. Therefore, if $\gamma_{w}(G)=|U|$, then for every pair of vertices $u, v \in U$ such that $N(u) \cap N(v) \neq \emptyset$, it follows that $\{u, v\}$ is a cut set.

Lemma 9. Let $G=(U \cup W, E)$ be a bipartite graph where $|U| \leq|W|$. If $\gamma_{w}(G)<|U|$, then there exists a vertex belonging to W of degree greater than or equal to three.

Proof. Let S be a $\gamma_{w}(G)$-set of G. From $\gamma_{w}(G)<|U|$ we deduce that $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$, due to the domination property of S. Let $S_{u}^{(0)}=S \cap U$ and $S_{w}^{(0)}=S \cap W$. By the connectivity of $G[S]_{w}$, there exist $u_{1} \in U-S, u_{1}^{\prime} \in S_{u}^{(0)}$ and $w_{1} \in S_{w}^{(0)}$ such that $u_{1} w_{1} \in E$ and $u_{1}^{\prime} w_{1} \in E$. If $\operatorname{deg}\left(w_{1}\right) \geq 3$, then we are done. If $\operatorname{deg}\left(w_{1}\right)=2$, then for $S_{u}^{(1)}=S_{u}^{(0)} \cup\left\{u_{1}\right\}$ and $S_{w}^{(1)}=S_{w}^{(0)}-\left\{w_{1}\right\}$ we have that $S^{(1)}=S_{u}^{(1)} \cup S_{w}^{(1)}$ is a $\gamma_{w}(G)$-set.

As above, there exist $u_{2} \in U-S^{(1)}, u_{2}^{\prime} \in S_{u}^{(1)}$ and $w_{2} \in S_{w}^{(1)}$ such that $u_{2} w_{2} \in E$ and $u_{2}^{\prime} w_{2} \in E$. If $\operatorname{deg}\left(w_{2}\right) \geq 3$, then we are done. If $\operatorname{deg}\left(w_{2}\right)=2$, then for $S_{u}^{(2)}=S_{u}^{(1)} \cup\left\{u_{2}\right\}$ and $S_{w}^{(2)}=S_{w}^{(1)}-\left\{w_{2}\right\}$ we have that $S^{(2)}=S_{u}^{(2)} \cup S_{w}^{(2)}$ is a $\gamma_{w}(G)$-set.

By repeating this argument we conclude that either there exists $w_{k} \in S \cap W$ such that $\operatorname{deg}\left(w_{k}\right) \geq 3$ or there exists a $\gamma_{w}(G)$-set, say D, such that $D \cap W=\emptyset$, which is a contradiction. The proof is complete.

A matching $M \subseteq E$ from U to W is a set of $|U|$ independent edges in G.
Theorem 10 (P. Hall, 1935). A bipartite graph $G=(U \cup W, E)$ contains a matching from U to W if and only if $|N(X)| \geq|X|$, for every $X \subseteq U$.

We will use Hall's theorem to prove the following result.
Proposition 11. For any semiregular bipartite graph $G(U \cup W, E), \tau(G)=\min \{|U|,|W|\}$.
Proof. In a $\left(\delta_{1}, \delta_{2}\right)$-semiregular bipartite graph $G=(U \cup W, E)$ every vertex of U has degree δ_{1} and every vertex of W has degree δ_{2}. We suppose $|U| \leq|W|$ and, as a consequence, $\delta_{1} \geq \delta_{2}$. For every $X \subset U$ we have $\delta_{1}|X| \leq \delta_{2}|N(X)| \leq \delta_{1}|N(X)|$. Hence, $|X| \leq|N(X)|$. Thus, by Hall's theorem we conclude that every maximum matching of G has size $|U|$. As a consequence, by König-Egerváry's theorem we conclude $\tau(G)=|U|$.

Proposition 12. Let $G=(U \cup W, E)$ be a bipartite semiregular graph where $|U| \leq|W|$. If $\gamma_{w}(G)=\tau(G)$, then for every pair of vertices $u, v \in U$ such that $N(u) \cap N(v) \neq \emptyset$, it follows that $\{u, v\}$ is a cut set.

Proof. Assume that $G=(U \cup W, E)$ is a $\left(\delta_{1}, \delta_{2}\right)$-semiregular bipartite graph which satisfies the premises. For $\delta_{2}=2$ the result is straightforward, while for $\delta_{2} \geq 3$ the result is a direct consequence of Lemma 8 and Proposition 11.

Lemma 13. Let $G=(U \cup W, E)$ be a connected $\left(\delta_{1}, \delta_{2}\right)$-semiregular bipartite graph where $|U| \leq|W|$. If for every pair of vertices $u, v \in U$ such that $N(u) \cap N(v) \neq \emptyset$, it follows that $\{u, v\}$ is a cut set, then $\delta_{2} \leq 2$.

Proof. Among all the pairs of vertices $a, b \in U$ such that $N(a) \cap N(b) \neq \emptyset$, we take a pair, say u, v, that minimizes

$$
\mu=\min _{i \in\{1, \ldots, k\}}\left\{\left|W_{i}\right|\right\},
$$

where $G_{1}=\left(U_{1} \cup W_{1}, E_{1}\right), \ldots, G_{k}=\left(U_{k} \cup W_{k}, E_{k}\right)$ are the connected components of $G-\{u, v\}$. Let $w \in W$ be such that $u, v \in N(w)$. Let us assume, without loss of generality, that $\mu=\left|W_{1}\right|$.

Note that, each vertex in W_{1} only has neighbors in U_{1} or in $\{u, v\}$. By the connectivity of G we have $\left|N_{W_{1}}(u)\right|<\delta_{1}$ or $\left|N_{W_{1}}(v)\right|<\delta_{1}$.

We proceed by contradiction. Suppose $\delta_{2} \geq 3$. Then, since $\left|W_{1}\right| \geq \delta_{1}$, there exists at least one vertex $w^{\prime} \in W_{1}$ such that $\left|N_{U_{1}}\left(w^{\prime}\right)\right| \geq 2$ (otherwise, every vertex of W_{1} must be adjacent to u and v and, as a consequence, $\left|N_{W_{1}}(u)\right|=\left|N_{W_{1}}(v)\right|=\delta_{1}$, which is a contradiction). Let $u^{\prime}, v^{\prime} \in U_{1}$ be such that $u^{\prime}, v^{\prime} \in N\left(w^{\prime}\right)$. If $G_{1}-\left\{u^{\prime}, v^{\prime}\right\}$ is a connected graph, then $G-\left\{u^{\prime}, v^{\prime}\right\}$ also is a connected graph, a contradiction. So, $G_{1}-\left\{u^{\prime}, v^{\prime}\right\}$ is not connected. Let $G_{1}^{\prime}=\left(U_{1}^{\prime} \cup W_{1}^{\prime}, E_{1}^{\prime}\right), \ldots, G_{k^{\prime}}^{\prime}=\left(U_{k^{\prime}}^{\prime} \cup W_{k^{\prime}}^{\prime}, E_{k^{\prime}}^{\prime}\right)$ be the connected components of $G_{1}-\left\{u^{\prime}, v^{\prime}\right\}$. Now, given $i, j \in\left\{1, \ldots, k^{\prime}\right\}, i \neq j$, if there exist $x \in W_{i}^{\prime}$ and $y \in W_{j}^{\prime}$ such that $x \in N(u)$ and $y \in N(v)$, or vice versa, then x and y belong to the same component of $G-\left\{u^{\prime}, v^{\prime}\right\}$, i.e., x, u, w, v, y is a path in $G-\left\{u^{\prime}, v^{\prime}\right\}$. Thus, as $G-\left\{u^{\prime}, v^{\prime}\right\}$ is not connected, there exists $i \in\left\{1, \ldots, k^{\prime}\right\}$, such that $x \notin N(u) \cup N(v)$, for every $x \in W_{i}^{\prime}$. So, $G_{i}^{\prime}=\left(U_{i}^{\prime} \cup W_{i}^{\prime}, E_{i}^{\prime}\right)$ is a connected component of $G-\left\{u^{\prime}, v^{\prime}\right\}$ and $\left|W_{i}^{\prime}\right|<\left|W_{1}\right|$, which is a contradiction with the minimality of $\left|W_{1}\right|$.

Theorem 14. Let $G=(U \cup W, E)$ be a connected $\left(\delta_{1}, \delta_{2}\right)$-semiregular bipartite graph. Then $\gamma_{w}(G)=\tau(G)$ if and only if $\min \left\{\delta_{1}, \delta_{2}\right\} \leq 2$.

Proof. Let us suppose $|U| \leq|W|$ and, as a consequence, $\delta_{1} \geq \delta_{2}$. If $\gamma_{w}(G)=\tau(G)$, then by Proposition 12 and Lemma 13 we deduce $\delta_{2} \leq 2$.

Conversely, if $\delta_{2}=1$, then G is a star graph and $\gamma_{w}(G)=\tau(G)=1$. Moreover, if $\delta_{2}=2$, then by Lemma 9 we obtain $\gamma_{w}(G)=|U|$. So, by Proposition 11 we conclude $\gamma_{w}(G)=\tau(G)$.

4. Regular graphs

Lemma 15. Let G be a regular graph of order n. Then $\gamma_{w}(G)=\tau(G)$ if and only if G is bipartite and $\gamma_{w}(G)=\frac{n}{2}$.

Proof. Let $G=(V, E)$ be a δ-regular graph of order n. We suppose $\gamma_{w}(G)=\tau(G)$. Let S be a $\tau(G)$-set. Note that S is a weakly connected dominating set and $\bar{S}=V-S$ is an independent set. Hence, the size of G is

$$
\frac{n \delta}{2}=\sum_{v \in S}\left|N_{\bar{S}}(v)\right|+\frac{1}{2} \sum_{v \in S}\left|N_{S}(v)\right| .
$$

Now, since $\sum_{v \in S}\left|N_{\bar{S}}(v)\right|=(n-|S|) \delta$, we obtain

$$
\begin{equation*}
|S| \delta=\frac{1}{2}\left(\delta n+\sum_{v \in S}\left|N_{S}(v)\right|\right) \tag{1}
\end{equation*}
$$

Thus, if $\sum_{v \in S}\left|N_{S}(v)\right|>0$, then $\gamma_{w}(G)=|S|>\frac{n}{2}$, a contradiction. Therefore, $\sum_{v \in S}\left|N_{S}(v)\right|=0$ and, as a consequence, G is bipartite and by (1) we have $\gamma_{w}(G)=|S|=\frac{n}{2}$.

Conversely, suppose G is a bipartite graph where $\gamma_{w}(G)=\frac{n}{2}$. Since for bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover (König-Egerváry's theorem), and every δ-regular bipartite graph ($\delta \geq 1$) has a perfect matching, we conclude $\tau(G)=\frac{n}{2}$. The proof is complete.

As a direct consequence of Lemma 15 and Theorem 14 we obtain the following result.
Theorem 16. Let G be a regular graph of order n. Then $\gamma_{w}(G)=\tau(G)$ if and only if G is isomorphic to a cycle graph of even order.

5. Unicyclic graphs

Let G be a connected unicyclic graph and let $C=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the set of vertices belonging to the cycle C_{k} of G. We suppose that u_{i} is adjacent to u_{i+1}, for every $i \in\{1,2, \ldots, k\}$. Here the subscripts are taken modulo k. Let $G_{i}=G-\left\{u_{i-1} u_{i}, u_{i} u_{i+1}\right\}$ be the subgraph obtained from G by removing the edges $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$. Let $T_{i}=\left(V_{i}, E_{i}\right)$ be the connected component of G_{i} containing u_{i}. Note that T_{i} is a tree which can be seen as a tree with root u_{i}. Let $\mathcal{F}=\left\{T_{i}: i \in\{1, \ldots k\}\right\}$. We say that T_{i} belongs to the family $\mathcal{F}_{0} \subset \mathcal{F}$ if T_{i} is a trivial graph or if the root u_{i} does not belong to any $\gamma_{w}\left(T_{i}\right)$-set. Also, we define the family \mathcal{F}_{1} as $\mathcal{F}_{1}=\left\{T_{i} \in \mathcal{F}: T_{i} \notin \mathcal{F}_{0}\right\}$, i.e., $T_{i} \in \mathcal{F}_{1}$ if and only if there exists a $\gamma_{w}\left(T_{i}\right)$-set, S_{i}, such that $u_{i} \in S_{i}$ and T_{i} is not a trivial tree. Note that there exists a $\gamma_{w}(G)$-set, S, such that $u_{l} \in S$, for every $T_{l} \in \mathcal{F}_{1}$.

With the above notation we establish the following result.
Theorem 17. Let G be a connected unicyclic graph. The following assertions hold.
(i) If $\left|\mathcal{F}_{1}\right| \geq 2$, then $\gamma_{w}(G)=\tau(G)$ if and only if for every two trees $T_{i}, T_{j} \in \mathcal{F}_{1}$ such that $T_{i+1}, T_{i+2}, \ldots, T_{j-1} \in \mathcal{F}_{0}$, it follows $j-i \equiv 0(\bmod 2)$.
(ii) If $\mathcal{F}_{1}=\emptyset$ or $\left|\mathcal{F}_{1}\right|=1$, then $\gamma_{w}(G)=\tau(G)$ if and only if the cycle of G has even order.

Proof. To prove the necessity of (i) we proceed by contradiction. We suppose there exist two trees $T_{i}, T_{j} \in \mathcal{F}_{1}$ such that $T_{i+1}, T_{i+2}, \ldots, T_{j-1} \in \mathcal{F}_{0}$ and the path $P_{k}=\left(V_{p}, E_{p}\right)$ induced by the vertices $u_{i+1}, u_{i+2}, \ldots, u_{j-1}$ has even order k. Let S be a $\tau(G)$-set (which also is a $\gamma_{w}(G)$-set) such that $u_{l} \in S$, for every $T_{l} \in \mathcal{F}_{1}$. Now, let $S^{\prime}=S-V_{p}, S^{\prime \prime}=S^{\prime} \cup\left\{u_{i+3}, u_{i+5}, \ldots, u_{j-2}\right\}$, for $j \geq i+5$, and $S^{\prime \prime}=S^{\prime}$, for $j=i+3$. Let us show that $S^{\prime \prime}$ is a weakly connected dominating set. If $v \in V_{p}-S^{\prime \prime}$, then there exists $u \in\left\{u_{i}, u_{i+3}, u_{i+5}, \ldots, u_{j-2}\right\} \subset S^{\prime \prime}$ such that u and v are adjacent. If $v \in V-\left(V_{p} \cup S\right)$, then there exists $v^{\prime} \in S^{\prime} \subset S^{\prime \prime}$, such that v^{\prime} and v are adjacent. Hence, $S^{\prime \prime}$ is a dominating set. On the other hand, $u_{i+1} u_{i+2}$ is not an edge of $G\left[S^{\prime \prime}\right]_{w}$ but, as $G[S]_{w}=G$ because S is a cover set, there is a path in $G\left[S^{\prime \prime}\right]_{w}$ from u_{i+2} to u_{i+1}. Moreover, as $T_{i+1}, T_{i+2}, \ldots, T_{j-1} \in \mathcal{F}_{0}$, for every u_{l} such that $l \in\{i+1, i+2, \ldots, j-1\}$ and T_{l} is not trivial, there exists at least one vertex of T_{l} belonging to $S \cap S^{\prime \prime}$ which is a neighbor of u_{l}. Therefore, $G\left[S^{\prime \prime}\right]_{w}$ is connected. As a consequence, $S^{\prime \prime}$ is a weakly connected dominating set. We have $\left|S^{\prime \prime} \cap V_{p}\right|=\frac{k}{2}-1$ and $\left|S \cap V_{p}\right|=\tau\left(P_{k}\right)=\frac{k}{2}$, due to $G[S]_{w}=G$. Therefore, $\left|S^{\prime \prime}\right|<|S|=\gamma_{w}(G)$, which is a contradiction.

To prove the sufficiency of (i) we need to show that there exists a $\gamma_{w}(G)$-set of cardinality $\tau(G)$. Let D be a $\gamma_{w}(G)$-set such that $u_{l} \in D$, for every $T_{l} \in \mathcal{F}_{1}$. Let $T_{i}, T_{j} \in \mathcal{F}_{1}$ such that $T_{i+1}, T_{i+2}, \ldots, T_{j-1} \in \mathcal{F}_{0}$ and the path $P_{k}=\left(V_{p}, E_{p}\right)$ induced by the vertices $u_{i+1}, u_{i+2}, \ldots, u_{j-1}$ has odd order k. If $\left|D \cap V_{p}\right| \leq \frac{k-1}{2}-1$, then there are at least two edges of P_{k} not covered by D, which is a contradiction with the connectivity of $G[D]_{w}$, so $\left|D \cap V_{p}\right| \geq \frac{k-1}{2}$. Since k is odd, there is a vertex cover of P_{k} of cardinality $\frac{k-1}{2}$ and, as a consequence, $\left|D \cap V_{p}\right|=\frac{k-1}{2}=\tau\left(P_{k}\right)$.

Now let $\left\{P_{k_{1}}=\left(V_{k_{1}}, E_{k_{1}}\right), P_{k_{2}}=\left(V_{k_{2}}, E_{k_{2}}\right), \ldots, P_{k_{r}}=\left(V_{k_{r}}, E_{k_{r}}\right)\right\}$ be the set of paths obtained (by the procedure used above to define P_{k}) from the different pairs of trees $T_{i}, T_{j} \in \mathcal{F}_{1}$ such that $T_{i+1}, T_{i+2}, \ldots, T_{j-1} \in \mathcal{F}_{0}$. Let \mathcal{F}_{2} be the set of non-trivial trees belonging to \mathcal{F}_{0}. Then we have

$$
\begin{aligned}
\gamma_{w}(G)=|D| & =\sum_{T_{i} \in \mathcal{F}_{1}} \gamma_{w}\left(T_{i}\right)+\sum_{T_{i} \in \mathcal{F}_{2}} \gamma_{w}\left(T_{i}\right)+\sum_{l=1}^{r}\left|D \cap V_{k_{l}}\right| \\
& =\sum_{T_{i} \in \mathcal{F}_{1}} \tau\left(T_{i}\right)+\sum_{T_{i} \in \mathcal{F}_{2}} \tau\left(T_{i}\right)+\sum_{j=1}^{r} \tau\left(P_{k_{j}}\right) \\
& \geq \tau(G) .
\end{aligned}
$$

Therefore, $\gamma_{w}(G)=\tau(G)$. The proof of (i) is complete.
To prove (ii) we differentiate two cases.
Case 1: $\mathcal{F}_{1}=\emptyset$. As above, \mathcal{F}_{2} denotes the set of trees different from a trivial graph belonging
to \mathcal{F}_{0}. In such a case, every $\gamma_{w}(G)$-set, S, satisfies

$$
S=S_{c} \cup\left(\bigcup_{T_{i} \in \mathcal{F}_{2}} \gamma_{w}\left(T_{i}\right)\right)
$$

where S_{c} is a $\gamma_{w}\left(C_{k}\right)$-set. Analogously, every $\tau(G)$-set, S^{\prime}, satisfies

$$
S^{\prime}=S_{c}^{\prime} \cup\left(\bigcup_{T_{i} \in \mathcal{F}_{2}} \tau\left(T_{i}\right)\right)
$$

where S_{c}^{\prime} is a $\tau\left(C_{k}\right)$-set. Since for every tree T, it follows $\tau(T)=\gamma_{w}(T)$, we have $|S|=\left|S^{\prime}\right|$ if and only if $\gamma_{w}\left(C_{k}\right)=\tau\left(C_{k}\right)$. Hence, by Claim 4 we conclude $\gamma_{w}(G)=\tau(G)$ if and only if k is even. Therefore, the proof of (ii) for this case is complete.
Case 2: $\left|\mathcal{F}_{1}\right|=1$. If $T_{i} \in \mathcal{F}_{1}$, then $T_{i+1}, T_{i+2}, \ldots, T_{i-1} \in \mathcal{F}_{0}$. So, the proof of (ii) for this case is obtained by analogy to the proof of (i) by taking $T_{j}=T_{i}$.

In order to complete the method that decides whether a given unicyclic graph satisfies $\gamma_{w}(G)=\tau(G)$, we provide a deterministic algorithm that determines whether $T_{i} \in \mathcal{F}_{0}$ or $T_{i} \in \mathcal{F}_{1}$. For the sake of generality, we recall both families of trees \mathcal{F}_{0} and \mathcal{F}_{1} in terms of a given root of the tree. This means that a tree T with root v, denoted by T_{v}, is in \mathcal{F}_{0} if either T is a trivial graph or the root v does not belong to any $\gamma_{w}(T)$-set.
Proposition 18. Let $T_{v}=(V, E)$ be a rooted tree with root $v \in V$. Let $T_{1}=\left(V_{1}, E_{1}\right), \ldots, T_{k}=$ $\left(V_{k}, E_{k}\right)$ be the rooted trees resulting from the k connected components of $T_{v}-\{v\}$, where the corresponding roots v_{1}, \ldots, v_{k} are the vertices of T_{v} such that v_{j} is adjacent to v and $v_{j} \in V_{j}$, $j \in\{1, \ldots, k\}$. Let $F=\left\{T_{j} \in \mathcal{F}_{0}: 1 \leq j \leq k\right\}$. Then, $T_{v} \in \mathcal{F}_{0}$ if and only if $|F|=0$.
Proof. Let S be a $\tau\left(T_{v}\right)$-set and let S_{j} be a $\tau\left(T_{j}\right)$-set. It should be noted that the set $(S-$ $\left.V_{j}\right) \cup S_{j} \cup\left\{v_{j}\right\}$ is a vertex cover of T. Therefore, if $v_{j} \in S_{j}$, then $\left|\left(S-V_{j}\right) \cup S_{j} \cup\left\{v_{j}\right\}\right|=$ $\left|\left(S-V_{j}\right) \cup S_{j}\right|=\tau(T)$. On the other hand, if there does not exist a $\tau\left(T_{j}\right)$-set S_{j} such that $v_{j} \in S_{j}$, then either $v_{j} \in S$ and $\left|S \cap V_{j}\right|=\tau\left(T_{j}\right)+1$ or $v_{j} \notin S$ and $\left|S \cap V_{j}\right|=\tau\left(T_{j}\right)$. Consequently,

$$
\begin{aligned}
\tau\left(T_{v}\right) & =|\{v\} \cap S|+\sum_{j=1}^{k}\left|S \cap V_{j}\right| \\
& =|\{v\} \cap S|+\sum_{j=1}^{k} \tau\left(T_{j}\right)+\sum_{T_{j} \in F}\left|\left\{v_{j}\right\} \cap S\right| .
\end{aligned}
$$

Let us suppose $|F|=0$. In this case for every $\tau\left(T_{v}\right)$-set S we have

$$
\begin{equation*}
\tau\left(T_{v}\right)=|\{v\} \cap S|+\sum_{j=1}^{k} \tau\left(T_{j}\right) \tag{2}
\end{equation*}
$$

Note that for every $j \in\{1, \ldots, k\}$ we can take a $\tau\left(T_{j}\right)$-set S_{j} such that $v_{j} \in S_{j}$. In such a case, $\cup_{j=1}^{k} S_{j}$ is a $\tau\left(T_{v}\right)$-set, so $\tau\left(T_{v}\right)=\sum_{j=1}^{k} \tau\left(T_{j}\right)$. Thus, by Equation (2) we obtain that for every $\tau\left(T_{v}\right)$-set $S, v \notin S$. Therefore, $T_{v} \in \mathcal{F}_{0}$.

Conversely, if $T_{v} \in \mathcal{F}_{0}$, then for every $\tau\left(T_{v}\right)$-set S we have $v \notin S$ and, as a consequence, $v_{j} \in S$ for every $j \in\{1, \ldots, k\}$. Now, if there exists $T_{j} \in \mathcal{F}_{0}$, then for every $\tau\left(T_{j}\right)$-set S_{j} we have $v_{j} \notin S_{j}$ and, as a consequence, $\left|S \cap V_{j}\right|=\left|S_{j}\right|+1$. Then by taking $S^{\prime}=S-V_{j}$, we obtain that $S^{\prime \prime}=S^{\prime} \cup S_{j} \cup\{v\}$ is a $\tau\left(T_{v}\right)$-set which satisfies $v \in S^{\prime \prime}$, a contradiction. Therefore, $|F|=0$.

Proposition 18 states whether a rooted tree T_{v} is in \mathcal{F}_{0}. Therefore, Algorithm 1 recursively solves this decision problem in linear time complexity with respect to the number of vertices.

```
Algorithm 1 Deciding whether \(T_{v} \in \mathcal{F}_{0}\)
Require: A rooted tree \(T_{v}=(V, E)\).
    if \(T_{v}\) is a trivial graph then
        return true
    end if
    for all tree \(T_{j}\) child of \(v\) with root \(v_{j}\) do
        if \(T_{j} \in \mathcal{F}_{0}\) then
                return false;
        end if
    end for
    return true
```


5.1. Spanning trees

The set of all spanning trees of a connected graph G is denoted by $\mathcal{S}_{t}(G)$.
Lemma 19. Let G be a connected graph. For every $T \in \mathcal{S}_{t}(G), \gamma_{w}(G) \leq \gamma_{w}(T)$ and $\tau(T) \leq$ $\tau(G)$.

Proof. The inequality $\gamma_{w}(G) \leq \gamma_{w}(T)$ immediately follows from the fact that every weakly connected dominating set of a spanning tree of G is a weakly connected dominating set of G. Analogously, the inequality $\tau(T) \leq \tau(G)$ follows from the fact that every vertex cover of G is a vertex cover of any spanning tree of G.

Every spanning tree of a cycle graph C_{k} is a path graph P_{k}. For k even we have $\gamma_{w}\left(C_{k}\right)=$ $\gamma_{w}\left(P_{k}\right)=\tau\left(P_{k}\right)=\tau\left(C_{k}\right)=\frac{k}{2}$ and, for k odd we have $\gamma_{w}\left(C_{k}\right)=\gamma_{w}\left(P_{k}\right)=\tau\left(P_{k}\right)=\frac{k-1}{2}$ while $\tau\left(C_{k}\right)=\frac{k+1}{2}$.

Proposition 20. Let G be a connected unicyclic graph. If $\gamma_{w}(G)=\tau(G)$, then for every $T \in \mathcal{S}_{t}(G), \tau(T)=\tau(G)$ and $\gamma_{w}(T)=\gamma_{w}(G)$.

Proof. If $\gamma_{w}(G)=\tau(G)$, then Lemma 19 leads to $\tau(T) \leq \tau(G)=\gamma_{w}(G) \leq \gamma_{w}(T)$, for every $T \in \mathcal{S}_{t}(G)$. Now, since for every tree, $\gamma_{w}(T)=\tau(T)$, we conclude $\tau(T)=\tau(G)=\gamma_{w}(G)=$ $\gamma_{w}(T)$.

Given two adjacent vertices x, y of G, we denote by $G-\{x y\}$ the subgraph obtained by removing from G the edge $x y$.

Lemma 21. Let G be a connected unicyclic graph. If $\gamma_{w}(G)<\tau(G)$, then the following assertions hold.
(i) For every $\gamma_{w}(G)$-set $S, G[S]_{w} \in \mathcal{S}_{t}(G)$.
(ii) There exists $T \in \mathcal{S}_{t}(G)$, such that $\tau(G)=\tau(T)+1$.

Proof. By definition, for every weakly connected dominating set S of $G, G[S]_{w}$ is a spanning subgraph of G and which is connected. Moreover, since every vertex cover is a weakly connected dominating set, if $\gamma_{w}(G)<\tau(G)$, then for every $\gamma_{w}(G)$-set S, there exist two adjacent vertices x, y of G such that $x, y \notin S$. Let C be the cycle of G. By the connectivity of $G[S]_{w}$ we deduce that $x, y \in C$. So, $G[S]_{w}$ is a spanning tree of G, i.e., $G[S]_{w}=G-\{x y\}$. Therefore, (i) follows.

Moreover, for $T=G-\{x y\}=G[S]_{w}$ we have $\gamma_{w}(G)=\gamma_{w}(T)=\tau(T)$. Thus, from $\tau(G)>\gamma_{w}(G)$ we deduce $\tau(G)>\tau(T)$. Note that, by the connectivity of $G[S]_{w}$, there is no edge $x^{\prime} y^{\prime}$ different from $x y$ such that $x^{\prime}, y^{\prime} \notin S$. Hence, $S \cup\{x\}$ is a vertex cover for G and we conclude $\tau(G)=\tau(T)+1$. The proof is complete.

By Proposition 20 and Lemma 21 (ii) we obtain the following result.
Theorem 22. Let G be a connected unicyclic graph. Then $\gamma_{w}(G)=\tau(G)$ if and only if $\tau(G)=\tau(T)$, for every $T \in \mathcal{S}_{t}(G)$.

To apply Theorem 22 for unicyclic graphs where the cycle is even we can use the shortest augmenting path algorithm to compute maximum matching (see, for instance, [5]) and then, by König-Egerváry's theorem, we obtain the value of $\gamma_{w}(G)$.

6. Block graphs

A graph is a block graph if it is connected and every block (maximal 2-connected component) is a clique (a complete subgraph). Note that every block graph can be constructed from a tree by replacing every edge by a clique of arbitrary size; any two cliques have at most one vertex in common. So, every tree is a block graph.

We know that for every tree T it follows $\tau(T)=\gamma_{w}(T)$. So, from now on G denotes a block graph different from a tree. Let $C=(U, E)$ be a block of G where $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $k \geq 3$. Let $\mathcal{F}=\left\{G_{1}=\left(U_{1}, E_{1}\right), \ldots, G_{k}=\left(U_{k}, E_{k}\right)\right\}$ be the set of connected components resulting from removing the edges of C. We assume that $u_{i} \in U_{i}$, for every $i \in\{1, \ldots, k\}$. With this notation we establish the following result.

Proposition 23. If $\tau(G)=\gamma_{w}(G)$, then for every $i \in\{1, \ldots, k\}$ either $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$ or G_{i} is a trivial graph.

Proof. Let W be a $\tau(G)$-set and let $W_{i}=W \cap U_{i}$. It should be noted that W_{i} is a vertex cover of the corresponding non-trivial graph G_{i}. Let us assume, without loss of generality, that G_{1} is a non-trivial graph with $\tau\left(G_{1}\right)>\gamma_{w}\left(G_{1}\right)$ and let S_{1} be a $\gamma_{w}\left(G_{1}\right)$-set. Since $k \geq 3$ and C is a complete graph, all but one vertex of $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ belong to the vertex cover W. Then, $S=S_{1} \cup W_{2} \cup \cdots \cup W_{k}$ is a weakly connected dominating set of G. Since $\left|S_{1}\right|<\left|W_{1}\right|$ by assumption, and $|S|=|W|-\left|W_{1}\right|+\left|S_{1}\right|$, we have $|S|<|W|$, a contradiction.

Now, we proceed similarly to the analysis for unicycle graphs by defining two families $\mathcal{F}_{0} \subseteq \mathcal{F}$ and $\mathcal{F}_{1} \subseteq \mathcal{F}$. We say that G_{i} is in \mathcal{F}_{0} if it is a trivial graph or if $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$ and u_{i} does not belong to any $\tau\left(G_{i}\right)$-set. On the other hand, G_{i} is in \mathcal{F}_{1} if $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$ and there exists a $\tau\left(G_{i}\right)$-set, S_{i}, such that $u_{i} \in S_{i}$. Note that, \mathcal{F}_{0} and \mathcal{F}_{1} do not necessarily form a partition of \mathcal{F}. With this notation we establish the following result.

Theorem 24. $\tau(G)=\gamma_{w}(G)$ if and only if $\left|\mathcal{F}_{0}\right| \leq 1$ and for every non-trivial graph G_{i}, $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$.

Proof. First, let us assume that $\tau(G)=\gamma_{w}(G)$. In this case, by Proposition 23 we have that $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$ for every non-trivial graph G_{i}.

Let W be a $\tau(G)$-set and let $W_{i}=W \cap U_{i}$. Notice that W_{i} is a weakly connected dominating set of the non-trivial graph G_{i}. Suppose, without loss of generality, that $G_{1}, G_{2} \in \mathcal{F}_{0}$. Now, for $j \in\{1,2\}$, let S_{j} be a $\tau\left(G_{j}\right)$-set if G_{j} is a non-trivial graph and let $S_{j}=\emptyset$ if G_{j} is a trivial graph. Since C is a complete graph we have that all but one vertex of $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ belong to the vertex cover W, so $S=S_{1} \cup S_{2} \cup W_{3} \cup \cdots \cup W_{k} \cup\left\{u_{k}\right\}$ is a weakly connected dominating set of G. Note that we add u_{k} to S in case u_{k} is not in W. Thus, if $u_{k} \notin W$, then $u_{1}, u_{2} \in W$ and, as a consequence, $\left|S_{1}\right|<\left|W_{1}\right|$ and $\left|S_{2}\right|<\left|W_{2}\right|$. Moreover, if $u_{k} \in W$, then $u_{1} \in W$ or $u_{2} \in W$ and, as a consequence, $\left|S_{1}\right|<\left|W_{1}\right|$ or $\left|S_{2}\right|<\left|W_{2}\right|$. In both cases we deduce $|S|<|W|$, a contradiction. Therefore, $\left|\mathcal{F}_{0}\right| \leq 1$.

Now, let us assume that $\tau\left(G_{i}\right)=\gamma_{w}\left(G_{i}\right)$ for every non-trivial graph G_{i} and at most one of them, say G_{1}, is in \mathcal{F}_{0}. This means that every subgraph G_{i} for $i \in\{2, \ldots, k\}$ is non-trivial. Let S be a $\gamma_{w}(G)$-set and let $S_{i}=S \cap U_{i}$, as before, every S_{i} is a weakly connected dominating set of the non-trivial graph G_{i}. Therefore,

$$
|S| \geq\left|S_{1}\right|+\sum_{i=2}^{k} \gamma_{w}\left(G_{i}\right)=\left|S_{1}\right|+\sum_{i=2}^{k} \tau\left(G_{i}\right)
$$

So we have

$$
\sum_{i=2}^{k} \tau\left(G_{i}\right) \leq|S|-\left|S_{1}\right|
$$

On the other hand, for $i \in\{2, \ldots, k\}$ let W_{i} be a $\tau\left(G_{i}\right)$-set such that $u_{i} \in W_{i}$. Also, let $W_{1}=\emptyset$ if G_{1} is a trivial graph and let W_{1} be a $\tau\left(G_{1}\right)$-set if G_{1} is a non-trivial graph. Then, $W=W_{1} \cup \cdots \cup W_{k}$ is a vertex cover of G and $|W|=\left|W_{1}\right|+\sum_{i=2}^{k} \tau\left(G_{i}\right) \leq\left|W_{1}\right|+|S|-\left|S_{1}\right|$. However, it should be noted that if G_{1} is a trivial graph, then $\left|W_{1}\right|=0 \leq\left|S_{1}\right|$, otherwise $\left|W_{1}\right|=\tau\left(G_{1}\right)=\gamma_{w}\left(G_{1}\right) \leq\left|S_{1}\right|$. So, $|W| \leq|S|=\gamma_{w}(G) \leq \tau(G)$ and, as a consequence, $|W|=|S|=\tau(G)=\gamma_{w}(G)$.

Theorem 24 leads to Algorithm 2 that determines whether $\tau(G)=\gamma_{w}(G)$ for block graphs.

```
Algorithm 2 Determining whether \(\tau(G)=\gamma_{w}(G)\) for a block graph \(G\).
Require: A block graph \(G\).
    Let \(C=(U, E)\) be a block of \(G\) of maximum order, where \(U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}\).
    if \(k=2\) then
        return true. // Note that in this case \(G\) is a tree.
    end if
    Let \(G_{1}=\left(U_{1}, E_{1}\right), \ldots, G_{k}=\left(U_{k}, E_{k}\right)\) be the connected components resulting from remov-
    ing the edges of \(C\).
    Call Algorithm 3 so as to build two sets \(F_{0}=\left\{G_{i}: G_{i} \in \mathcal{F}_{0}\right\}\) and \(F_{1}=\left\{G_{i}: G_{i} \in \mathcal{F}_{1}\right\}\).
    if \(\left|F_{0}\right| \leq 1\) and \(\left|F_{0}\right|+\left|F_{1}\right|=k\) then
        return true.
    else
        return false.
    end if
```


7. Corona graphs

Let G and H be two graphs of order n_{1} and n_{2}, respectively. Recall that the corona product $G \circ H$ is defined as the graph obtained from G and H by taking one copy of G and n_{1} copies of H and joining by an edge each vertex from the $i^{t h}$-copy of H with the $i^{\text {th }}$-vertex of G. We will denote by $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the set of vertices of G and by $H_{i}=\left(V_{i}, E_{i}\right)$ the copy of H such that $v_{i} \sim v$ for every $v \in V_{i}$. We denote by N_{k} the null graph of order k.

Proposition 25. For any connected graph G, $\gamma_{w}(G \circ H)=\tau(G \circ H)$ if and only if $H \cong N_{k}$.
Proof. Let $G=(V, E)$. We know that V, is a $\gamma(G \circ H)$-set. Since $G \circ H[V]_{w}$ is connected, we have that $\gamma_{w}(G \circ H)=|V|$. Thus, if $H \cong N_{k}$, then V is a vertex cover of $G \circ H$. Hence, $\gamma_{w}(G \circ H)=\tau(G \circ H)$. Now, let W be a $\tau(G \circ H)$-set. If the size of H is different from zero, then for each vertex $v \in V$, the vertex cover W contains at least two vertices belonging to the copy of H corresponding to v. Hence, $\tau(G \circ H)>|V|=\gamma_{w}(G \circ H)$. The proof is complete.

```
Algorithm 3 Determining if a block graph \(G=(U, E)\) with extreme vertex \(u\) belongs to \(\mathcal{F}_{0}\),
to \(\mathcal{F}_{1}\), or to none of them.
Require: \(G\) a block graph and \(u\) an extreme vertex in \(G\).
    if \(G\) is a trivial graph then
        return \(G\) belongs to \(\mathcal{F}_{0}\).
    end if
    Let \(C=\left(\left\{u_{1}, \cdots, u_{k}\right\}, E^{\prime}\right)\) be the block of \(G\) containing \(u\).
    Let \(G_{1}=\left(U_{1}, E_{1}\right), \ldots, G_{k}=\left(U_{k}, E_{k}\right)\) be the connected components of \(G\) resulting from
    removing the edges of \(C\) from \(G\), such that \(u_{i} \in U_{i} \forall i \in\{1, \cdots, k\}\).
    Let \(F_{0}\) and \(F_{1}\) be two sets.
    for \(i \in\{1, \cdots, k\}\) do
        Recursively call Algorithm 3 on input the block graph \(G_{i}\) and the extreme vertex \(u_{i}\).
        if \(G_{i} \in \mathcal{F}_{0}\) then
            \(F_{0}=F_{0} \cup\left\{G_{i}\right\}\)
        else if \(G_{i} \in \mathcal{F}_{1}\) then
            \(F_{1}=F_{1} \cup\left\{G_{i}\right\}\)
        end if
    end for
    if \(k=2\) and \(\left|F_{0}\right|=2\) then
        return \(G\) belongs to \(\mathcal{F}_{1}\). //interchangeably either \(u_{1}\) or \(u_{2}\) needs to be in a \(\tau(G)\)-set.
    end if
    if \(k=2\) and \(\left|F_{0}\right|=\left|F_{1}\right|=1\) then
        return \(G_{i}\) belongs to \(\mathcal{F}_{0}\). //none \(\tau(G)\)-set contains \(u\).
    end if
    if \(\left|F_{0}\right|>1\) or \(\left|F_{0}\right|+\left|F_{1}\right|<k\) then
        return \(G_{i}\) does not belong neither to \(\mathcal{F}_{0}\) nor to \(\mathcal{F}_{1}\). //applying Theorem 24
    else
        return \(G_{i}\) belongs to \(\mathcal{F}_{0}\). //Applying Theorem 24 and considering that the isolated
        vertex \(u\) is that graph belonging to \(\mathcal{F}_{0}\).
    end if
```


Bibliography

[1] Y.Z. Chen, A.L. Liestman, Approximating minimum size weakly connected dominating sets for clustering mobile ad hoc networks, Proceedings of the Third ACM International Symposium on MobileAd Hoc Networking and Computing (MobiHoc'2002), June 2002, pp.157-164.
[2] J. Dunbar, J. Grossman, J. Hattingh, S. T. Hedetniemi, A. McRae, On weakly connected domination in graphs, Discrete Mathematics 167-168 (1997).
[3] R.G. Downey and M.R. Fellows, Fixed parameter tractability and completeness II: completeness for W[1], Theory, Comp. Sci., vol. 141, (1995), pp.1-2.
[4] F. Harary, J. P. Hayes and H. Wu, A survey of the theory of hypercube graphs. Computers \& Mathematics with Applications 15 (4) (1988) 277-289.
[5] A. Levitin, Introduction to the Design and Analysis of Algorithms. Addison Wesley, 2006.
[6] S. Pirzada, A. Dharwadker, Applications of Graph Theory, Journal of the Korean Society for industrial and applied mathematics, vol. 11, no. 4 (2007).
[7] R. Rajaraman, Topology control and routing in ad hoc networks: a survey, SIGACT News, Vol. 33, Number 2, pages 60-73, 2002.
[8] J. Wu, H. Li, On calculating connected dominating set for efficient routing in ad hoc wireless networks, Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM, (1999) 7-14.
[9] J. Wu, Extended Dominating-Set-Based Routing in Ad Hoc Wireless Networks with Unidirectional Links,IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 3, (2002) 189-200.
[10] J. Wu, F. Dai, An Extended Localized Algorithm for Connected Dominating Set Formation in Ad Hoc Wireless Networks, IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 10, (2004).
[11] X. Xu and J. Ma, An efficient simulated annealing algorithm for the minimum vertex cover problem, Neurocomputing, vol.69, (2006), pp. 913-916.

[^0]: *Corresponding author. Phone: +352466644 5458. Fax: 4666443 5458. Email: rolando.trujillo@uni.lu

