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Abstract. Technologies able to track moving objects such as GPS,
GSM, and RFID, have been well-adopted worldwide since the end of
the 20th century. As a result, companies and governments manage and
control huge spatio-temporal databases, whose publication could lead to
previously unknown knowledge such as human behaviour patterns or new
road traffic trends (e.g., through Data Mining). Aimed at properly bal-
ancing data utility with users’ privacy rights, several microaggregation-
based methods for publishing movement data have been proposed. These
methods are reviewed in this book chapter. We highlight challenges in the
three stages of the microaggregation process namely, clustering, obfusca-
tion, and privacy and utility evaluation. We also address some of these
challenges by presenting yet another microaggregation-based method for
privacy-preserving publication of spatio-temporal databases.

1 Introduction

The already mature establishment of telecommunication and wire-
less technologies has impulsed the collection of spatio-temporal data
at a large scale. To fully exploit the analytical usefulness of these
data, they eventually need to be released to researchers and/or an-
alysts. Doing so, useful knowledge can be acquired and applied to,
for example, intelligent transportation, traffic monitoring, urban and
road planning, etc.

However, spatio-temporal data in form of individuals’ trajecto-
ries are likely to contain sensitive information that users expect to
keep private. Consequently, the publication or the outsourcing of



databases of trajectories should properly balance data utility with
users’ privacy rights.

While data utility preservation solely depends on the data, pri-
vacy protection needs to consider, in addition, the potential of the ad-
versary. The adversary capability is normally defined as background
knowledge learned from other public source of information (e.g., cen-
sus data or social networks). Knowing the times at which an indi-
vidual visited a few locations can help an adversary to identify the
individual’s trajectory in the published database, and therefore learn
the individual’s other locations at other times. All this makes simple
de-identification realized by removing identifying attributes a naive
protection mechanism. Hence, more sophisticated privacy-preserving
techniques ought to be considered.

Contributions. In this book chapter we review the literature on
microaggregation-based methods for privacy-preserving trajectory
data publication. In particular, we focus on similarity measures for
clustering trajectories and privacy models based on k-anonymity.
Amongst those privacy models, we concentrate in (k, d)-anonymity [5,
6] and prove that it does not preserve privacy in the sense of k-
anonymity for § > 0. We also present a distance between trajectories
able to compare trajectories that are not defined over the same time
span. Based on this distance, a microaggregation-based approach
that preserves original locations (i.e, contain no fake, perturbed or
generalized location) is proposed and empirically evaluated by using
a real-life dataset.

Organization. Section 2 reviews the k-anonymity concept applied
to the trajectory anonymization problem and describes expected
properties of the similarity measure used for microaggregation. A
flaw in the (k,d)-anonymity concept is shown in Section 3. Our
method and distance between trajectories are presented in Section 4,
which are empirically evaluated in Section 5. Section 6 summarizes
and concludes the book chapter.

2 Related work

Samarati and Sweeney [1] proposed in 1998 a novel privacy model
named k-anonymity. K-anonymity is based on the concept of quasi-
identifiers, which are defined as any set of attributes that can poten-



tially appear in publicly available datasets that contain identifiers.
A database is said to satisfy k-anonymity if each combination of
values of quasi-identifier attributes is shared by at least k& records.
Therefore, k-anonymity ensures that an adversary (even provided
with background knowledge) cannot pinpoint the identity behind a
record with probability higher than 1/k.

A popular and effective technique to achieve k-anonymity is mi-
croaggregation [2]. The microaggregation technique works in two
stages:

1. Clustering. The original records are partitioned into clusters based
on some similarity measure. Each cluster contains at least k
records and typically no more than 2k — 1 [3].

2. Obfuscation. Each cluster is anonymized individually by obfusca-
tion. The obfuscation may be based on an aggregation operator
like the average or the median, or can also be achieved by replac-
ing the records in the cluster with synthetic or partially synthetic
data.

In 2006, microaggregation was proposed for location k-anonymity
in location-based services [4], but achieving k-anonymity using mi-
croaggregation in spatio-temporal data is not straightforward. In
a trajectory, any location can be regarded as a quasi-identifier at-
tribute [5]. In this case, k-anonymity would require each anonymized
trajectory to be equal to, at least, £ — 1 other anonymized trajecto-
ries. This undoubtedly causes a huge information loss.

To overcome this issue, several trajectory similarity measures and
ad-hoc privacy models based on k-anonymity have been proposed [9,
12,13, 5-8, 11]. Both aspects of the microaggregation process are dis-
cussed in detail next.

2.1 Distances between trajectories

In microaggregation, selecting the best distance is of paramount im-
portance. However, what does best mean in the context of spatio-
temporal data publication could have different, and sometimes con-
tradictory, answers. For instance, some applications (e.g., urban traf-
fic monitoring) might need precise temporal information, whilst oth-
ers (e.g., evaluation of touristic places attractiveness) deal well with



coarse-grained temporal data. We thus list next a few desirable prop-
erties of a distance measure for trajectories.

Uncertain sampling rate: Trajectories can be recorded at differ-
ent sampling rate either due to performance issues or technology
singularity. The difference in the sampling rate, which typically lead
to differences in the size of the trajectories, should has no effect on
the result of the distance measure. Neither the Euclidean-based dis-
tances used in [5, 7, 8] nor the EDR or the Log-cost distances adopted
in [6] and [9], respectively, meet this property.

Noise resiliancy: Several outlier detection mechanism for spatio-
temporal data exist. However, subtle differences might appear when
comparing two trajectories, which could be regarded as a kind of
“noise”, but definitely not as outliers. See Figure 1 for an example.
There, two identical (except in one location) trajectories are shown.
However, distance measures, such as the Frechet distance [10], do
not deal well with this scenario. Others, such as the EDR distance,
has mechanisms to ignore this “noise” and would consider both tra-
jectories to be equal.

/\

Fig. 1. Two trajectories that are equal except in the peak. They are represented in
different planes for visualization purpose only.

Shape preservation: The flow of the two curves (trajectories) need
also to be taken into account. Said differently, a trajectory should
not be treated as a set of locations (e.g., see the Hausdorff distance)
but as a sequence of locations.
Other properties: i) Combine the spatial and the time dimensions
(e.g., [7,8]). 1) Meet the triangle inequality (e.g., the Euclidean dis-
tance). iii) Have low computational complexity (the Frechet distance
is an example of a computationally expensive distance).

In Section 4.1 we present our own similarity measure specifically
designed for clustering trajectories that might not overlap in time.



2.2 Privacy models

Privacy models for trajectory anonymization heavily depend on the
assumptions about the data and the adversary’s knowledge. A tra-
jectory might be downgraded to a location sequence (e.g., as in [12]),
which simplifies the model by removing the time dimension from the
problem. Other approaches assume that the data owner anonymizing
the database knows the set of quasi-identifiers used by the adversary.
Consequently, those parts of the trajectories matching the adversary
knowledge are simply removed from the published data [11].

A conservative, yet common, assumption is that every location
could be regarded as a quasi-identifier. This models then define pri-
vacy as the highest re-identification probability for all the users in the
dataset. In order to achieve k-anonymity under this assumption, the
obfuscation method should transform the trajectories in a cluster in
such a way they become indistinguishable. In this regard, different
obfuscation methods for trajectory anonymization have been pro-
posed (e.g., generalization [9,12,13], spatial translation [5,6], and
permutation [7, 8].)

In 2008, the (k, §)-anonymity concept [5], which exploits the spa-
tial uncertainty in the trajectory recording process, was proposed.
The parameter k& has the same meaning as in k-anonymity, while &
is a lower bound of the uncertainty radius when recording locations.
We show in the next section that, for any § > 0 (that is, whenever
there is actual uncertainty), (k,d)-anonymity does not offer trajec-
tory k-anonymity®. As a result, the anonymization methods Never
Walk Alone (NWA, [5]) and Wait for Me (W4M, [6]) preserve the
claimed user privacy when § = 0 only.

3 Privacy analysis of (k, §)-anonymity

The (k, §)-anonymity privacy notion is based on the assumption that
trajectories are imprecise by nature. Unlike records in traditional
databases, trajectory data do not remain constant over time, because
a moving object should report its position in real-time. However, this
is impractical due to performance and wireless-bandwidth overhead.

3 The proof and analysis provided in Section 3 can also be found in the original
paper [15].



For this reason, Trajcevski et al. [14] suggest that a moving object
and the server should reach an agreement consisting on an uncer-
tainty threshold §, meaning that a position is reported only when it
deviates from its expected location by ¢ or more. Considering so, a
moving object does not draw a trajectory anymore, but an uncertain
trajectory defined by a trajectory 7 and an uncertainty threshold §.

Definition 1 (Trajectory). A trajectory is an ordered set of time-
stamped locations

T = {(tl,xl,yl), ceey (tna'rmyn)} s
where t; < tiyq for all1 < i <n.

Notation. For any time-stamp t; < ¢t < t¢,, the function 7(¢)
outputs the location of 7 at time ¢. If t = ¢; for some i € {1,--- ,n}
then 7(t) = (z;,y;), otherwise 7(¢) is the linear interpolation of the
poly-line 7 at time ¢. Similarly, 7(¢)[x] and 7(¢)[y] denote the spatial
coordinates of the location 7(t).

Definition 2 (Uncertain trajectory). An uncertain trajectory is
a pair (1,9) where T is a trajectory and § is an uncertainty threshold.
Geometrically, the uncertain trajectory is defined as the locus

UT(7,0) = {(t,z,y)ld((z,y), (r()[2], 7(t)[y])) < 0} ,

where d((z1,Y1), (x2,y2)) represents the Euclidean distance between
the locations (x1,y1) and (xa,y2).

As shown in Figure 2, an uncertain trajectory UT(7,d) is the
union of all the cylinders of radius ¢ centered in the lines formed by
(i, y;) and (2441, Y1) for every 1 < i < m. Then, any continuous
function PMCT : [ty,t,] — R? such that PMC7([ty,t,]) C UT(7,d)
is said to be a possible motion curve of the uncertain trajectory
UT(t,0).

If a trajectory 7 is a possible motion curve of the uncertain
version (73,0) of another trajectory 7, and viceversa (7, is a possible
motion curve of (71,4)), then 7 and 75 are said to be co-localized
with respect to ¢ [5,6]. This relation is denoted as C'olocs(71, 72) and
provides the rationale behind (k, d)-anonymity.
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Fig. 2. A trajectory 7 and its uncertain trajectory UT(7, ). A possible motion curve
within UT'(, §) is also shown.

Definition 3 ((k,d)-anonymity set). Given an uncertainty thresh-
old 0, a set of trajectories S is considered an anonymity set if and
only if Colocs(t;, 7;) V1,75 € S.

Then, (k,d)-anonymity is defined as follows in [5, 6]:

Definition 4 ((k,0)-anonymity). Given a database of trajectories
D, an uncertainty threshold §, and an anonymity threshold k, (k,J)-
anonymity is satisfied if, for every trajectory T € D, there exists a
(k,d)-anonymity set S C D such that T € S and |S| > k.

In order to evaluate the privacy offered by (k,d)-anonymity, we
should rely in a second definition of trajectory k-anonymity un-
der the same assumptions. We then use a privacy notion similar to
the ones adopted in [7,12,9], which are less restrictive than (k,d)-
anonymity [5,6] in the sense that the parameter § is not required.

Definition 5 (Trajectory k-anonymity). Let T be an anonymized
set of trajectories corresponding to an original set of trajectories T .
Let Pr «[7|o| denote the probability of the adversary’s correctly link-
ing the anonymized trajectory 7 € T with its corresponding original
trajectory T € T" given that the adversary’s knows a strict subset o
of the locations of 7. Then T* satisfies trajectory k-anonymity if
Pr.«[r|o] < 1/k for every T € T and o subset of the locations of T.

In Definition 5 above, the adversary’s knowledge is represented
as a sub-trajectory of an original trajectory, that is, as a subset of



the set of time-stamped locations of the original trajectory. This
background knowledge representation is appropriate for the trajec-
tory anonymization schemes [7,12,9]. However, the uncertainty on
the data under (k, §)-anonymity does not permit to assume that the
adversary knows a sub-trajectory in the above sense, except when
0 = 0 (no uncertainty). For § > 0, the adversary at best could know
a possible motion curve PMC, of a trajectory 7 contained in the
original database D. In other words, the adversary cannot be sure
that her knowledge PMC; is exactly what was recorded in D. It
should be remarked that the adversary’s knowledge was not explic-
itly defined in [5] or [6]. However, it is required in this book chapter
in order to provide formal privacy proofs.

Definition 6. The adversary’s knowledge in a database D of uncer-
tain tragectories is defined as a random possible motion curve PMC';
of some trajectory T € D.

Definition 6 can be seen the other way round: the adversary is
assumed to have the ability to acquire true actual locations about
a user, such as home address or visited places, but the locations
recorded in the database form a random possible motion curve of
the adversary’s knowledge due to the location uncertainty ¢. Note
that not considering the recorded trajectory as a random possible
motion curve of the true original trajectory contradicts the (k,d)-
anonymity concept.

Theorem 1. Let D be a database satisfying (k,d)-anonymity. In
general, D does not satisfy trajectory k-anonymity for any § > 0.

Proof: We first give a counterexample which satisfies (2,06)-
anonymity for any 0 > 0 but does not satisfy trajectory 2-anonymity;
we will then generalize the argument for any k. Let 7, and 75 be two
different but co-localized trajectories w.r.t. § such that each of them
consists of a single location. By the co-localization condition, the
time stamp of both locations is the same and the distance d between
the spatial coordinates of both locations satisfies 0 < d < 4.

Let D be the original dataset containing 7, and 75 only. Let us
provide the adversary with a random possible motion curve PMC.,
where i €p {1,2} is randomly chosen. According to Definition 5,



trajectory 2-anonymity is achieved if the adversary cannot guess
with probability greater than % whether ¢ =1 or ¢ = 2.

However, let us consider the following adversarial strategy:

1. The adversary computes d(PMC,,, ) and d(PMC.,, 7).

2. If d(PMC,,,71) < d(PMC,,, 1), the adversary’s guess i = 1;
otherwise, the adversary’s guess is 7 = 2.

Now we will show that the previous strategy achieves a probabil-
ity of success greater than % To that end, let us compute the prob-

ability that d(PMC,,, 1) > d(PMC,,,72) for a random PMC,,.

Let A and B the two points of intersection of the uncertainty cir-
cles of 7 and 1y (see Figure 3). Then, d(PMC,,, 1) > d(PMC;,, )
only holds when PM (., lies in the arc segment area formed by the
points A, B, and the uncertainty circle of 7; (shaded area in Fig-
ure 3). Since the line AB intersects the line formed by 7 and 7 in
its middle point, it can be concluded that 0 < d(A, B) < 2§. As
d(A, B) grows towards 2, the aforementioned arc segment area be-
comes asymptotically close to its maximum value 76%/2. This means
that:

Fig. 3. Two trajectories 71 and 72 of size 1 such that d(71,72) = d < §. The two circles
that intersect at A and B represent the uncertainty areas of both trajectories according
to Definition 2.



1
Pr(d(PMC;,, 1) > d(PMC;,, 1)) < 3 (1)

From Expression (1), it can be concluded that the adversary’s
success probability is always greater than % for any ¢ > 0, which
contradicts 2-anonymity.

The above reasoning can be generalized to any number k of tra-
jectories. The generalized adversarial strategy is:

1. The adversary computes d(PMC.,, ;) for all j € {1,---  k}.
2. The adversary’s guess is trajectory 7, such that

g = arg min, ., d(PMC>,, 7;)

By generalizing the geometric argument of Figure 3, it can be
seen that the adversary’s success probability with the above strategy
is greater than % This contradicts trajectory k-anonymity for any k
and 0. 0

Corollary 1. The methods NWA [5] and W4M [6] can only offer
trajectory k-anonymaity for 6 = 0, that is, when all k trajectories
in any (k,d)-anonymity set are identical. In other words, trajectory
k-anonymity is offered only when the set of anonymized trajectories
consists of clusters containing k or more identical trajectories each.

4 Owur microaggregation-based method

In this section we present an heuristic method, named SwapLoca-
tions, for privacy-preserving publication of trajectories. SwapLoca-
tions is based on microaggregation of trajectories and permutation
of locations. It first groups the trajectories into clusters of size at
least k£ based on their similarity and then transforms via location
permutation the trajectories inside each cluster to preserve privacy.

For clustering purposes, we present a distance for trajectories
which naturally considers both spatial and temporal coordinates.
Our distance is able to compare trajectories that are not defined
over the same time span, without resorting to time generalization.
It can also compare trajectories that are timewise overlapping only
partially or not at all.



4.1 Our similarity measure

Clustering trajectories requires defining a similarity measure —a dis-
tance between two trajectories. Because trajectories are distributed
over space and time, a distance that considers both spatial and tem-
poral aspects of trajectories is needed. Many distance measures have
been proposed in the past for both trajectories of moving objects and
for time series but most of them are ill-suited to compare trajecto-
ries for anonymization purposes. Therefore we define a new distance
which can compare trajectories that are only partially or not at all
timewise overlapping. We believe this is necessary to cluster trajec-
tories for anonymization. We need some preliminary notions.

Definition 7 (p%-contemporary trajectories). Two trajectories
T, = {(tih xziv y@’ R (t%,l’%, y;)}
and o
T = {<t]1a x{7y{)> ooy (B T i) }
are said to be p%-contemporary if

1

t =1t — 1]

p = 100 - min(

)

with I = max(min (¢, ) — max(ti,#]),0).

Intuitively, two trajectories are 100%-contemporary if and only
if they start at the same time and end at the same time; two tra-
jectories are 0%-contemporary if and only if they occur during non-
overlapping time intervals. Denote the overlap time of two trajecto-
ries T; and T} as ot(T;, Tj).

Definition 8 (Synchronized trajectories).

Given two p%-contemporary trajectories T; and T; for some p > 0,
both trajectories are said to be synchronized if they have the same
number of locations timestamped within ot(T;,T;) and these corre-
spond to the same timestamps. A set of trajectories is said to be
synchronized if all pairs of p%-contemporary trajectories in it are
synchronized, where p > 0 may be different for each pair.



If we assume that between two locations of a trajectory, the
object is moving along a straight line between the locations at a
constant speed, then interpolating new locations is straightforward.
Trajectories can be then synchronized in the sense that if one trajec-
tory has a location at time ¢, then other trajectories defined at that
time will also have a (possibly interpolated) location at time ¢. This
transformation guarantees that the set of new locations interpolated
in order to synchronize trajectories is of minimum cardinality. Algo-
rithm 1 describes this process. The time complexity of this algorithm
is O(|T'S|?) where |T'S| is the number of different timestamps in the
data set.

Algorithm 1 Trajectory synchronization

Require: 7 = {T1,...,Tn} aset of trajectories to be synchronized, where each T; € T
is of the form:

L: Let TS = {t} | (t},2%,y}) € T; : T; € T} be all timestamps from all locations of
all trajectories;

2: for all T; € T do

3: for all ts € T'S with ti <ts < t;l do

4: if location having timestamp ts is not in 7T; then

5: insert new location to T; having the timestamp ¢s and coordinates inter-
polated from the two timewise-neighboring locations;

6: end if

7 end for

8: end for

Definition 9 (Distance between trajectories). Consider a set
of synchronized trajectories T = {T11,...,Tn} where each trajectory
15 written as

T; = {( ilamziayi% SRR (t;z,xiﬂ,yﬁﬂ)} .

The distance between trajectories is defined as follows. If T;,T; € T
are p %-contemporary with p > 0, then

1 (mz _ wj)z + (yz o yj)2
d ﬂ T) = = 4 4 4 4
7 13) 2 ot(T. 1)

t[EOt(Ti 7rT]')



If T;,T; € T are 0%-contemporary but there is at least one subset of
7-
TH) = (T T T € T

such that Ty" = T;, "% = Tj and Te”k and Ty, are pg %-contemporary
with p; > 0 for £ =1 to n* — 1, then

'L]k: 1

. ijk i k

d(T;, T) = min ; (1", Ty}
1

Otherwise d(T;,T;) is not defined.

The computation of the distance between every pair of trajecto-
ries is not exponential as it could seem from the definition. Polynomial-
time computation of a distance graph containing the distances be-
tween all pairs of trajectories can be done as follows.

Definition 10 (Distance graph). A distance graph is a weighted
graph where

i) Nodes represent trajectories,
i) two nodes T; and T; are adjacent if the corresponding trajectories

are p %-contemporary for some p > 0, and
(111) the weight of the edge (1;,1;) is the distance between the trajec-

tories T; and Tj;.

Now, given the distance graph for 7 = {7}, ..., Ty}, the distance
d(T;,T;) for two trajectories is easily computed as the minimum cost
path between the nodes T; and T}, if such path exists. The inability
to compute the distance for all possible trajectories (the last case
of Definition 9) naturally splits the distance graph into connected
components. The connected component that has the majority of the
trajectories must be kept, while the remaining components represent
outlier trajectories that are discarded in order to preserve privacy.
Finally, given the connected component of the distance graph having
the majority of the trajectories of 7, the distance d(7;,T;) for any
two trajectories on this connected component is easily computed as
the minimum cost path between the nodes 7; and 7. The minimum
cost path between every pair of nodes can be computed using the
Floyd-Warshall algorithm with computational cost O(N?3), i.e., in
polynomial time.



4.2 The SwapLocations method

Algorithm 2 describes the process followed by the SwapLocations
method in order to anonymize a set of trajectories. First, the set of
trajectories is partitioned into several clusters. Then, each cluster is
anonymized using the SwapLocations function in Algorithm 3.

We limit ourselves to clustering algorithms which try to minimize
the sum of the intra-cluster distances or approximate the minimum
and such that the cardinality of each cluster is k, with k& an input
parameter; if the number of trajectories is not a multiple of £k, one
or more clusters must absorb the up to £ — 1 remaining trajecto-
ries, hence those clusters will have cardinalities between k 4+ 1 and
2k — 1. This type of clustering is precisely the one used in microag-
gregation [3]. The purpose of minimizing the sum of the intra-cluster
distances is to obtain clusters as homogeneous as possible, so that
the subsequent independent treatment of clusters does not cause
much information loss. The purpose of setting k as the cluster size is
to fulfill trajectory k-anonymity. We employ any microaggregation
heuristic for clustering purposes.

Algorithm 2 Cluster-based trajectory anonymization(7, R', R®, k)

Require: i) 7 = {T1,...,Tn} a set of original trajectories such that d(73;,T}) is
defined for all T;,Tj € T, ii) R a time threshold and R® a space threshold;

1: Use any clustering algorithm to cluster the trajectories of 7, while minimizing
the sum of intra-cluster distances measured with the distance of Definition 9 and
ensuring that minimum cluster size is k;

Let C1,Ca,...,Ch be the resulting clusters;
for all clusters C; do
C} = SwapLocations(C;, R, R®); // Algorithm 3
end for
Let T = C{ U---UC}. be the set of anonymized trajectories.

The SwapLocations function (Algorithm 3) begins with a random
trajectory 7" in C'. The function attempts to cluster each unswapped
triple A in 7" with another £ — 1 unswapped triples belonging to dif-
ferent trajectories such that: i) the timestamps of these triples differ
by no more than a time threshold R’ from the timestamp of A; ii)
the spatial coordinates differ by no more than a space threshold R*.
If no k —1 suitable triples can be found that can be clustered with A,



then X is removed; otherwise, random swaps of triples are performed
within the formed cluster. Randomly swapping this cluster of triples
guarantees that any of these triples has the same probability of re-
maining in its original trajectory or becoming a new triple in any of
the other k — 1 trajectories. Note that Algorithm 3 guarantees that
every triple A of every trajectory T' € C will be swapped or removed.

Algorithm 3 SwapLocations(C, R', R¥)

Require: i) C a cluster of trajectories to be transformed, ii) R’ a time threshold and
R? a space threshold;
1: Mark all triples in trajectories in C' as “unswapped”;
2: Let T be a random trajectory in C
3: for all “unswapped” triples A = (tx,xx,yx) in T do
4:  Let U = {\}; // Initializing U with {\}

5:  for all trajectories T’ in C with T’ # T do
6: Look for an “unswapped” triple ' = (txr,za/,yx) in T’ minimizing the
intra-cluster distance in U U {\'} and such that:
ltxv —ta] < R
0<V(@yv —aa)? + (yv —yn)? < R ;
7: if )\ exists then
8: U+~ UU{\N}
9: else
10: Remove A from T
11: Goto line 3 in order to analyze the next triple A;
12: end if
13: end for

14: Randomly swap all triples in U;

15: Mark all triples in U as “swapped”;
16: end for

17: Remove all “unswapped” triples in C}
18: return C.

The method SwapLocations meets trajectory k-anonymity in the
sense of Definition 5. Refer to the original work [7] for details on the
privacy analysis of SwapLocations.

5 Empirical results

In this section we evaluate the SwapLocations method by using a
real-life data set of cab mobility traces that were collected in the



city of San Francisco [16]*. We consider three utility measures: i)
percentage of removed trajectories, ii) percentage of removed loca-
tions, iii) and spatio-temporal range queries as proposed in [14]. The
latter is described in more detail next.

5.1 Spatio-temporal range queries

Trajcevski et al. proposed in [14] six spatio-temporal range queries.
For the sake of simplicity, we just keep the two more relevant for our
experiments: Sometime Definitely Inside (SI) and Always Definitely
Inside (AI).

— SI(T, R, ty,1.) is true if and only if there exists a time ¢ € [tp, t.]
at which every possible motion curve PMC7T of an uncertain
trajectory U(T, o) is inside region R. For a non-uncertain 7', the
previous condition can be adapted as: if and only if there exists
a time t € [ty, t.] at which T is inside R.

— AI(T, R, ty, t.) is true if and only if at every time ¢ € [ty, t.], every
possible motion curve PMC? of an uncertain trajectory U(T, o)
is inside region R. For a non-uncertain 7', the previous condition
becomes: if and only if at every time t € [t,, ], trajectory T is
inside R.

We accumulate the number of trajectories in a set of trajectories
T that satisfy the SI or Al range queries using the SQL style code
below.

— Query Qi(T, R, ty, te):

SELECT COUNT (%) FROM 7 WHERE SI(7 .traj, R, tp,te)
— Query Qo(T, R, ty, te):

SELECT COUNT (*) FROM 7 WHERE AI(7 .traj, R, tp,te)

Then, we define two different range query distortions:

_ %) _ 1 [Q1 (T, Rotp,te) = Qu (T, Rity,te)l
SID(T,7T*) = 1€ ZV<R,tb,te>€£ max (Q1 (T, R,tp,te),Q1(T*,Ritp.te)) where

¢ is a set of SI queries.

_ — i |Qz(Tathbvte)_QQ(T*7R7tb7t€)|
A:!:D(T’ T*) - ‘§| E‘V<R7tb7t€>€§ InaX(QQ(T7R7tb,te),QQ(T*7R7tb7te)) Where
¢ is a set of Al queries.

4 A more comprehensive empirical evaluation can be found in the original paper where
SwapLocations is introduced [7].



5.2 Results on real-life data

The San Francisco cab data set [16] we used consists of several files
each of them containing the GPS information of a specific cab dur-
ing May 2008. Each line within a file contains the space coordinates
(latitude and longitude) of the cab at a given time. However, the mo-
bility trace of a cab during an entire month can hardly be considered
a single trajectory. We used big time gaps between two consecutive
locations in a cab mobility trace to split that trace into several tra-
jectories.

For our experiments we considered just one day of the entire
month given in the real-life data set, but the empirical methodology
described below could be extended to several days. In particular,
we chose the day between May 25 at 12:04 hours and May 26 at
12:04 hours because during this 24-hour period there was the high-
est concentration of locations in the data set. We also defined the
maximum time gap in a trajectory as 3 minutes; above 3 minutes,
we assumed that the current trajectory ended and that the next lo-
cation belonged to a different trajectory. This choice was based on
the average time gap between consecutive locations in the data set,
which was 88 seconds; hence, 3 minutes was roughly twice the aver-
age. In this way, we obtained 4582 trajectories and 94 locations per
trajectory on average.

The next step was to filter out trajectories with strange features
(outliers). These outliers could be detected based on several aspects
like velocity, city topology, etc. We focused on velocity and defined
240 km/h as the maximum speed that could be reached by a cab.
Consequently, the distance between two consecutive locations could
not be greater than 12 km because the maximum within-trajectory
time gap was 3 minutes. This allowed us to detect and remove tra-
jectories containing obviously erroneous locations; Figure 4 shows
one of these removed outliers where a cab appeared to have jumped
far into the sea probably due to some error in recording its GPS
coordinates. Altogether, we removed 45 outlier trajectories and we
were left with a data set of 4547 trajectories with an average of 93
locations per trajectory. Figure 5 shows the ten longest trajectories
(in number of locations) in the final data set that we used.



Fig. 4. Example of an outlier trajectory in Fig. 5. Ten longest trajectories in the fil-
the original real-life data set tered real-life data set

We first consider the percentage of removed trajectories and the
percentage of removed locations as utility measures. Table 1 shows
how SwapLocations performs in terms of both.

Finally, Table 2 reports the performance of SwapLocations re-
garding spatio-temporal range queries. We picked random time in-
tervals of length at most 20 minutes. Also, random uncertain trajec-
tories with uncertainty threshold of size at most 7 km were chosen as
the regions, which is roughly a quarter of the average distance of all
trajectories. It can be seen that the SwapLocations method provides
lower range query distortion for every value of k when the space
threshold is small, i.e. when the total space distortion is also small.
However, the smaller the space threshold, the larger the number of
removed trajectories and locations (see Table 1). This illustrates the
trade-off between the utility properties considered.

6 Conclusions

Several microaggregation-based methods for privacy-preserving spatio-
temporal data publication have been proposed up to date. They
mostly differ in the similarity measure, the obfuscation method, and
the privacy model considered. In this book chapter we highlighted
relevant properties for trajectory similarity measures that should be
taken into account for microaggregation. We also described different
privacy models based on k-anonymity in terms of the assumptions
on the data and the adversary capabilities. In particular, we pro-



Table 1. Percentage of trajectories (columns la-
beled with T') and locations (columns labeled with
L) removed by SwapLocations for several values of
k and several space thresholds R® on the real-life
data set. Percentages have been rounded to inte-
gers for compactness.

2 4 6 8 10 15
R*\k
TLTLTLTLTLTL

1 2343406449 71 58 74 62 77 71 81

2 19 29 34 47 42 54 50 58 54 60 50 66

4 14 17 27 29 35 35 40 40 45 41 54 49

8 9 1019 19 25 25 31 29 34 31 42 38

16 5 7 1116 17 22 20 27 23 30 32 38

32 1 7 2153224275 30 8 38

64 0 6 0150220270 300 38

128 0 6 0150 22 0 27 0 30 0 38

Table 2. Range query distortion caused by
SwapLocations in terms of SID (columns labeled
with S) and AID (columns labeled with A), for
several values of k and several space thresholds
R®. A range query distortion x is represented as
the integer rounding of = * 100 for compactness.

2 4 6 8 10 15
R\k
SASASASASASA

1 1322 18 27 20 29 19 29 24 31 25 34

2 16 24 25 34 26 35 24 35 27 37 27 37

4 18 25 30 37 33 41 34 42 38 46 38 45

8 21 27 34 40 38 44 40 46 44 50 48 54

16 20 26 36 42 42 47 45 50 50 54 53 58

32 21 26 39 44 45 49 48 53 53 57 58 62

64 20 25 39 44 46 50 51 54 54 57 61 64

128 21 26 39 44 48 50 51 56 54 58 61 64

vided a proof that invalidates the (k, §)-anonymity concept for § > 0.
Finally, we presented a similarity measure and a microaggregation-
based approach that together deal with non-overlapping trajectories
and preserve original locations. The method was evaluated by using
a real-life dataset of trajectory data.
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